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Preface

How much should a good spectroscopist know about Fourier transforms? How well should a
professional who uses them as a tool in his/her work understand their behavior? Our belief
is, that a profound insight of the characteristics of Fourier transforms is essential for their
successful use, as a superficial knowledge may easily lead to mistakes and misinterpretations.
But the more the professional knows about Fourier transforms, the better he/she can apply all
those versatile possibilities offered by them.

On the other hand, people who apply Fourier transforms are not, generally, mathemati-
cians. Learning unnecessary details and spending years in specializing in the heavy math-
ematics which could be connected to Fourier transforms would, for most users, be a waste
of time. We believe that there is a demand for a book which would cover understandably
those topics of the transforms which are important for the professional, but avoids going into
unnecessarily heavy mathematical details. This book is our effort to meet this demand.

We recommend this book for advanced students or, alternatively, post-graduate students
of physics, chemistry, and technical sciences. We hope that they can use this book also
later during their career as a reference volume. But the book is also targeted to experienced
professionals: we trust that they might obtain new aspects in the use of Fourier transforms by
reading it through.

Of the many applications of Fourier transforms, we have discussed Fourier transform
spectroscopy (FTS) in most depth. However, all the methods of signal and spectral processing
explained in the book can also be used in other applications, for example, in nuclear magnetic
resonance (NMR) spectroscopy, or ion cyclotron resonance (ICR) mass spectrometry.

We are heavily indebted to Dr. Pekka Saarinen for scientific consultation, for planning
problems for the book, and, finally, for writing the last chapter for us. We regard him as a
leading specialist of linear prediction in spectroscopy. We are also very grateful to Mr. Matti
Hollberg for technical consultation, and for the original preparation of most of the drawings
in this book.

Jyrki Kauppinen and Jari Partanen

Turku, Finland, 13th October 2000

Fourier Transforms in Spectroscopy. J. Kauppinen, J. Partanen
Copyright © 2001 Wiley-VCH Verlag GmbH

ISBNs: 3-527-40289-6 (Hardcover); 3-527-60029-9 (Electronic)



Contents

1 Basic definitions 11
1.1 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Dirac’s delta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 General properties of Fourier transforms 23
2.1 Shift theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Similarity theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Modulation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Convolution theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Power theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Parseval’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Derivative theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Correlation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Autocorrelation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Discrete Fourier transform 35
3.1 Effect of truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Effect of sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Discrete spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Fast Fourier transform (FFT) 49
4.1 Basis of FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Cooley–Tukey algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Other integral transforms 61
5.1 Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Transfer function of a linear system . . . . . . . . . . . . . . . . . . . . . 66
5.3 z transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Fourier transform spectroscopy (FTS) 77
6.1 Interference of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Michelson interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Sampling and truncation in FTS . . . . . . . . . . . . . . . . . . . . . . . 83

Fourier Transforms in Spectroscopy. J. Kauppinen, J. Partanen
Copyright © 2001 Wiley-VCH Verlag GmbH

ISBNs: 3-527-40289-6 (Hardcover); 3-527-60029-9 (Electronic)



8 0 Contents

6.4 Collimated beam and extended light source . . . . . . . . . . . . . . . . . 89
6.5 Apodization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.6 Applications of FTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Nuclear magnetic resonance (NMR) spectroscopy 109
7.1 Nuclear magnetic moment in a magnetic field . . . . . . . . . . . . . . . . 109
7.2 Principles of NMR spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Applications of NMR spectroscopy . . . . . . . . . . . . . . . . . . . . . . 115

8 Ion cyclotron resonance (ICR) mass spectrometry 119
8.1 Conventional mass spectrometry . . . . . . . . . . . . . . . . . . . . . . . 119
8.2 ICR mass spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.3 Fourier transforms in ICR mass spectrometry . . . . . . . . . . . . . . . . 124

9 Diffraction and Fourier transform 127
9.1 Fraunhofer and Fresnel diffraction . . . . . . . . . . . . . . . . . . . . . . 127
9.2 Diffraction through a narrow slit . . . . . . . . . . . . . . . . . . . . . . . 128
9.3 Diffraction through two slits . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.4 Transmission grating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.5 Grating with only three orders . . . . . . . . . . . . . . . . . . . . . . . . 137
9.6 Diffraction through a rectangular aperture . . . . . . . . . . . . . . . . . . 138
9.7 Diffraction through a circular aperture . . . . . . . . . . . . . . . . . . . . 143
9.8 Diffraction through a lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.9 Lens and Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10 Uncertainty principle 155
10.1 Equivalent width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.2 Moments of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.3 Second moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

11 Processing of signal and spectrum 165
11.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
11.2 Mathematical filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.3 Mathematical smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
11.4 Distortion and (S/N ) enhancement in smoothing . . . . . . . . . . . . . . 184
11.5 Comparison of smoothing functions . . . . . . . . . . . . . . . . . . . . . 190
11.6 Elimination of a background . . . . . . . . . . . . . . . . . . . . . . . . . 193
11.7 Elimination of an interference pattern . . . . . . . . . . . . . . . . . . . . 194
11.8 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

12 Fourier self-deconvolution (FSD) 205
12.1 Principle of FSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
12.2 Signal-to-noise ratio in FSD . . . . . . . . . . . . . . . . . . . . . . . . . 212
12.3 Underdeconvolution and overdeconvolution . . . . . . . . . . . . . . . . . 217
12.4 Band separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.5 Fourier complex self-deconvolution . . . . . . . . . . . . . . . . . . . . . 219



9

12.6 Even-order derivatives and FSD . . . . . . . . . . . . . . . . . . . . . . . 221

13 Linear prediction 229
13.1 Linear prediction and extrapolation . . . . . . . . . . . . . . . . . . . . . . 229
13.2 Extrapolation of linear combinations of waves . . . . . . . . . . . . . . . . 230
13.3 Extrapolation of decaying waves . . . . . . . . . . . . . . . . . . . . . . . 232
13.4 Predictability condition in the spectral domain . . . . . . . . . . . . . . . . 233
13.5 Theoretical impulse response . . . . . . . . . . . . . . . . . . . . . . . . . 234
13.6 Matrix method impulse responses . . . . . . . . . . . . . . . . . . . . . . 236
13.7 Burg’s impulse response . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13.8 The q-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
13.9 Spectral line narrowing by signal extrapolation . . . . . . . . . . . . . . . 242
13.10 Imperfect impulse response . . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.11 The LOMEP line narrowing method . . . . . . . . . . . . . . . . . . . . . 248
13.12 Frequency tuning method . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
13.13 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
13.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Answers to problems 261

Bibliography 265

Index 269



1 Basic definitions

1.1 Fourier series

If a function h(t), which varies with t , satisfies the Dirichlet conditions

1. h(t) is defined from t = −∞ to t = +∞ and is periodic with some period T ,

2. h(t) is well-defined and single-valued (except possibly in a finite number of points) in

the interval
[
− 1

2 T, 1
2 T

]
,

3. h(t) and its derivative dh(t)/dt are continuous (except possibly in a finite number of step

discontinuities) in the interval
(
− 1

2 T, 1
2 T

)
, and

4. h(t) is absolutely integrable in the interval
[
− 1

2 T, 1
2 T

]
, that is,

T/2∫
−T/2

|h(t)| dt < ∞,

then the function h(t) can be expressed as a Fourier series expansion

h(t) = 1

2
a0 +

∞∑
n=1

[an cos(nω0t) + bn sin(nω0t)] =
∞∑

n=−∞
cneinω0t , (1.1)

where 


ω0 = 2π

T
= 2π f0,

an = 2

T

T/2∫
−T/2

h(t) cos(nω0t) dt,

bn = 2

T

T/2∫
−T/2

h(t) sin(nω0t) dt,

cn = 1

T

T/2∫
−T/2

h(t)e−inω0t dt = 1

2
(an − ibn),

c−n = c∗
n = 1

2
(an + ibn).

(1.2)
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12 1 Basic definitions

f0 is called the fundamental frequency of the system. In the Fourier series, a function h(t)
is analyzed into an infinite sum of harmonic components at multiples of the fundamental
frequency. The coefficients an , bn and cn are the amplitudes of these harmonic components.

At every point where the function h(t) is continuous the Fourier series converges uni-
formly to h(t). If the Fourier series is truncated, and h(t) is approximated by a sum of only
a finite number of terms of the Fourier series, then this approximation differs somewhat from
h(t). Generally, the approximation becomes better and better as more and more terms are
included.

At every point t = t0 where the function h(t) has a step discontinuity the Fourier series
converges to the average of the limiting values of h(t) as the point is approached from above
and from below:[

lim
ε→0+

h(t0 + ε) + lim
ε→0+

h(t0 − ε)

]/
2.

Around a step discontinuity, a truncated Fourier series overshoots at both sides near the
step, and oscillates around the true value of the function h(t). This oscillation behavior in the
vicinity of a point of discontinuity is called the Gibbs phenomenon.

The coefficients cn in Equation 1.1 are the complex amplitudes of the harmonic compo-
nents at the frequencies fn = n f0 = n/T . The complex amplitudes cn as a function of the
corresponding frequencies fn constitute a discrete complex amplitude spectrum.

Example 1.1: Examine the Fourier series of the square wave shown in Figure 1.1.

Solution. Applying Equation 1.2, the square wave can be expressed as the Fourier series

h(t) = 4

π

[
cos(ω0t) − 1

3
cos(3ω0t) + 1

5
cos(5ω0t) − · · ·

]

= 4

π

∞∑
n=1

sin(nπ/2)

n
cos(nω0t).

Figure 1.1: Square wave h(t).
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If this Fourier series is truncated, and the function is approximated by a finite sum, then
this approximation differs from the original square wave, especially around the points of
discontinuity. Figure 1.2 illustrates the Gibbs oscillation around the point t = t0 of the square
wave of Figure 1.1.

The amplitude spectrum of the square wave of Figure 1.1 is shown in Figure 1.3. The
amplitude coefficients of the square wave are cn = 1

2 an = 0, 2
π
, 0, − 2

3π
, 0, 2

5π
, 0, . . .

Figure 1.2: The principle how the truncated Fourier series of the square wave h(t) of Fig. 1.1 oscillates
around the true value in the vicinity of the point of discontinuity t = t0.

Figure 1.3: Discrete amplitude spectrum of the square wave h(t) of Fig. 1.1, formed by the amplitude
coefficients cn . f0 is the fundamental frequency.
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1.2 Fourier transform

The Fourier series, Equation 1.1, can be used to analyze periodic functions of a period T and
a fundamental frequency f0 = 1

T . By letting the period tend to infinity and the fundamental
frequency to zero, we can obtain a generalization of the Fourier series which also is suitable
for analysis of non-periodic functions.

According to Equation 1.1,

h(t) =
∞∑

n=−∞

1

T

T/2∫
−T/2

h(t ′)e−i2πn f0t ′ dt ′

︸ ︷︷ ︸
cn

ei12πn f0t . (1.3)

We shall replace n f0 by f , and let T → ∞ and 1/T = f0 = d f → 0. In this case,

∞∑
n=−∞

1

T
→

∞∫
−∞

d f, (1.4)

and

h(t) =
∞∫

−∞


 ∞∫
−∞

h(t ′)e−i2π f t ′ dt ′



︸ ︷︷ ︸
H( f )

ei2π f t d f. (1.5)

We can interpret this formula as the sum of the waves H( f ) d f ei2π f t .

With the help of the notation H( f ), we can write Equation 1.5 in the compact form

h(t) =
∞∫

−∞
H( f )ei2π f t d f = �{H( f )}. (1.6)

The operation � is called the Fourier transform. From above,

H( f ) =
∞∫

−∞
h(t)e−i2π f t dt = �

−1{h(t)}. (1.7)

The operation �−1 is called the inverse Fourier transform.
Functions h(t) and H( f ) which are connected by Equations 1.6 and 1.7 constitute a

Fourier transform pair. Notice that even though we have used as the variables the symbols t
and f , which often refer to time [s] and frequency [Hz], the Fourier transform pair can be
formed for any variables, as long as the product of their dimensions is one (the dimension of
one variable is the inverse of the dimension of the other).
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In the literature, it is possible to find several, slightly differing ways to define the Fourier
integrals. They may differ in the constant coefficients in front of the integrals and in the
exponents. In this book we have chosen the definitions in Equations 1.6 and 1.7, because they
are the most convenient for our purposes. In our definition, the exponential functions inside the
integrals carry the coefficient 2π , because, in this way, we can avoid the coefficients in front
of the integrals. We have noticed that coefficients in front of Fourier integrals are a constant
source of mistakes in calculations, and, by our definition, these mistakes can be avoided. Also
the theorems of Fourier transform are essentially simpler, if this definition is chosen: in this
way even they, except the derivative theorem, have no front coefficients.

The definition of the Fourier transform pair remains sensible, if a constant c is added
in front of one integral and its inverse, constant 1/c, is added in front of the other integral.
The product of the front coefficients should equal one. We strongly encourage not to use
definitions which do not fulfill this condition. An example of this kind of definition, sometimes
encountered in literature, is obtained by setting f = ω/2π in Equations 1.6 and 1.7. We obtain

h(t) = 1

2π

∞∫
−∞

H(ω)eiωt dω = �{H(ω)}, (1.8)

and

H(ω) =
∞∫

−∞
h(t)e−iωt dt = �

−1{h(t)}. (1.9)

We do not recommend these definitions, since they easily lead to difficulties.
In our definition, the exponent inside the Fourier transform � carries a positive sign,

and the exponent inside the inverse Fourier transform �
−1 carries a negative sign. It is

more common to make the definition vice versa: generally the exponent inside the Fourier
transform � has a negative sign, and the exponent inside the inverse Fourier transform �

−1

has a positive sign. Our book mainly discusses symmetric functions, and the Fourier transform
and the inverse Fourier transform of a symmetric function are the same. Consequently, the
choice of the sign has no scientific meaning. In our opinion, our definition is more logical,
simpler, and easier to memorize: + sign in the exponent corresponds to � and − sign in the
exponent corresponds to �−1!

We recommend that, while reading this book, the reader forgets all other definitions and
uses only this simplest definition. In other contexts, the reader should always check, which
definition of Fourier transforms is being used.

Table 1.1 lists a few important Fourier transform pairs, which will be useful in this book,
as well as the full width at half maximum, FWHM, of these functions.
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Table

1.1:
Fourier

transform
pairs

h
(t)

and
H

(
f
),and

the
FW

H
M

of
these

functions.

N
am

e
FW

H
M

�

−
1,

�

N
am

e
FW

H
M

of
h
(t)

h
(t)

of
h
(t)

⇔
of

H
(t)

H
(

f
)

of
H

(
f
)

boxcar
�

2T
(t)= {

1
,

|t|≤
T
,

0
,

|t|
>

T
2T

sinc
2T

sinc(π
2T

f
)

1
.2067

2T

triangular
�

T
(t)= {

1−
|t|T

,
|t|≤

T
,

0
,

|t|
>

T
T

sinc
2

T
sinc

2(π
T

f
)

1
.7718

2T

L
orentzian

σ
/
π

σ
2+

t 2
2
σ

exponential
exp

(−
π

2
σ|f|)

ln
2

π
σ

G
aussian

√
απ

exp
(−

α
t 2)

2 √
ln

2α
G

aussian
exp (−

π
2

f
2

α

)
2π

√
α

ln
2

D
irac’s

�
delta

δ
(t−

t0 )
0

⇒
exponentialw

ave
exp

(i2
π

t0
f
)

—

D
irac’s

�

−
1

delta
δ
(t−

t0 )
0

⇒
exponentialw

ave
exp

(−
i2

π
t0

f
)

—



1.3 Dirac’s delta function 17

Example 1.2: Applying Fourier transforms, compute the integral

∞∫
0

sin(px) cos(qx)

x
dx ,

where p > 0 and p 	= q.

Solution. Knowing that the imaginary part of eiqx is antisymmetric, we can write
∞∫

0

sin(px) cos(qx)

x
dx = p

2

∞∫
−∞

sin(px)

px
eiqx dx = p

2

∞∫
−∞

sinc(px)ei2π
q

2π
x dx

= π

2
h(

q

2π
),

where the function

h(t) = �{ p

π
sinc(π

p

π
f )}.

From Table 1.1, we know that the Fourier transform of a sinc function is a boxcar function.
Consequently,

π

2
h(

q

2π
) = π

2
�p/π (

q

2π
) =

{
π/2, |q| < p,

0, |q| > p.

1.3 Dirac’s delta function

Dirac’s delta function, δ(t), also called the impulse function, is a concept which is frequently
used to describe quantities which are localized in one point. Even though real physical
quantities cannot be truly localized in exactly one point, the concept of Dirac’s delta function
is very useful.

Dirac’s delta function is defined with the following equation:

∞∫
−∞

F(t)δ(t − t0) dt = F(t0), (1.10)

where F(t) is an arbitrary function of t , continuous at the point t = t0.
By inserting the function F(t) ≡ 1 in Equation 1.10, we can see that the area of Dirac’s

delta function is equal to unity, that is,

∞∫
−∞

δ(t − t0) dt = 1. (1.11)

In the usual sense, δ(t) is not really a function at all. In practice,

lim
t→t0

δ(t − t0) = ∞. (1.12)

At points t 	= t0 either δ(t − t0) = 0 or δ(t) oscillates with infinite frequency.
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It can be shown that Dirac’s delta function has the following properties:


δ(−t) ∧= δ(t),

tδ(t) ∧= 0,

δ(at) ∧= 1

a
δ(t), if a > 0,

dδ(t)

dt
∧= −1

t
δ(t),

F(t)δ(t − t0)
∧= F(t0)δ(t − t0),

(1.13)

where the correspondence relation ∧= means that the value of the integral in Equation 1.10
remains the same whichever side of the relation is inserted in the integral.

The “shape” of Dirac’s delta function is not uniquely defined. There are infinitely many
representations of δ(t) which satisfy Equation 1.10. One of them, very useful with Fourier
transforms, is

δ(t) =
∞∫

−∞
ei2π ts ds = �{1} =

∞∫
−∞

cos(2π ts) ds. (1.14)

Equivalently, we can write

δ(t) =
∞∫

−∞
e−i2π ts ds = �

−1{1} =
∞∫

−∞
cos(2π ts) ds. (1.15)

A few other useful representations for Dirac’s delta function are, for example,

δ(t) ∧= lim
a→∞

sin(aπ t)

π t
∧= lim

σ→0+
σ/π

t2 + σ 2

∧= lim
a→∞

a

2
e−a|t | ∧= lim

a→0+
1

a
√

2π
e−t2/(2a2). (1.16)

Two rather simple representations are

δ(t) ∧= lim
a→0+

f (t, a)
∧= lim

a→0+
g(t, a), (1.17)

where f (t, a) and g(t, a) are the functions illustrated in Figure 1.4.
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Figure 1.4: Two representations for Dirac’s delta function: δ(t) ∧= lim
a→0+

f (t, a)
∧= lim

a→0+
g(t, a).

Example 1.3: Using Dirac’s delta function in the form of Equation 1.14, prove that Equa-
tion 1.6 yields Equation 1.7.

Solution. If h(t) =
∞∫

−∞
H( f )ei2π f t d f , then

�
−1{h(t)} =

∞∫
−∞

h(t)e−i2π f ′t dt =
∞∫

−∞

∞∫
−∞

H( f )ei2π t ( f − f ′) d f dt

=
∞∫

−∞
H( f )


 ∞∫
−∞

ei2π t ( f − f ′) dt


 d f

(1.14)=
∞∫

−∞
H( f )δ( f − f ′) d f

(1.10)= H( f ′).

Consequently,

H( f ) =
∞∫

−∞
h(t)e−i2π f t dt,

that is, Equation 1.6 ⇒ Equation1.7.
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Problems

1. Show that the Fourier transform � and the inverse Fourier transform �
−1 of a symmetric

function are the same. Also show that these Fourier transforms are symmetric.

2. Compute �{�{h(t)}} and �−1{�−1{h(t)}}.
3. Derive the Fourier transforms of the Gaussian curve, i.e.,

�

{√
α

π
exp

(
−α f 2

)}
and �

−1
{√

α

π
exp

(
−α f 2

)}
,

where α > 0.

4. Derive the Fourier transform of the Lorentzian function L( f ) = σ/π

f 2 + σ 2
, σ > 0.

(Function L( f ) is symmetric, and hence � and �−1 are the same.)

Hint: Use the following integral from mathematical tables:

∞∫
0

cos(Cx)

x2 + a2
dx = π

2a
e−Ca ,

where C, a > 0.

5. Applying Fourier transforms, compute the integral I =
T∫

−T

(T −|t |) cos[2π f0(T − t)] dt .

6. Let us denote �2T ′(t) the boxcar function of the width 2T ′, stretching from −T ′ to T ′,
and of one unit height. The sum of N boxcar functions

1

N
� 1

N 2T (t),
1

N
� 2

N 2T (t),
1

N
� 3

N 2T (t), . . . ,
1

N
�2T (t)

is a one-unit high step-pyramidal function. In the limit N → ∞ this pyramidal function
approaches a one-unit high triangular function �T (t). Determine the inverse Fourier
transform of the pyramidal function, and find the inverse Fourier transform of �T (t) by
letting N → ∞.

Hint: You may need the trigonometric identity

sin α + sin(2α) + · · · + sin(Nα) =
sin

[
1
2 (N + 1)α

]
sin

(
1
2 Nα

)
sin(α/2)

.

7. Show that the function

δ(t) =
∞∫

−∞
ei2π f t d f

satisfies the definition of Dirac’s delta function by using the Fourier’s integral theorem

�
−1
�{F} = F.
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8. Show that the function f (t) = lim
σ→0

σ/π

t2 + σ 2
satisfies the definition of Dirac’s delta

function.

9. Let us define the step function u(t) as

u(t) =
{

0, t < 0,

1, t ≥ 0.

Show that the choice δ(t − t0) = d

dt0
u(t0 − t) satisfies the condition of Dirac’s delta

function.

Hint: You can change the order of differentiation and integration.

10. Compute the integral

ε∫
−ε

δ(t) dt , where ε > 0, by inserting δ(t) =
∞∫

−∞
e±i2π f t d f in it.

11. What are the Fourier transforms (both � and �−1) of the following functions? Let us
assume that f0 > 0.

(a) δ( f ) (Dirac’s delta peak in the origin);

(b) δ( f − f0) (Dirac’s delta peak at f0);

(c) δ( f − f0) + δ( f + f0) (Dirac’s delta peaks at f0 and − f0);

(d) δ( f − f0) − δ( f + f0) (Dirac’s delta peak at f0 and negative Dirac’s delta peak at
− f0).
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The general definitions of the Fourier transform � and the inverse Fourier transform �
−1 are

h(t) =
∞∫

−∞
H( f )ei2π f t d f = �{H( f )}, (2.1)

H( f ) =
∞∫

−∞
h(t)e−i2π f t dt = �

−1{h(t)}. (2.2)

H( f ) is called the spectrum and h(t) is the signal. The inverse Fourier transform operator
�

−1 generates the spectrum from a signal, and the Fourier transform operator � restores the
signal from a spectrum. A single point in the spectrum corresponds to a single exponential
wave in the signal, and vice versa. The signal is often defined in the time domain (t-domain),
and the spectrum in the frequency domain ( f -domain), as above.

Usually, the signal h(t) is real. The spectrum H( f ) can still be complex, because

H( f ) =
∞∫

−∞
h(t)e−i2π f t dt =

∞∫
−∞

h(t) cos(2π f t) dt − i

∞∫
−∞

h(t) sin(2π f t) dt

= �cos{h(t)} − i�sin{h(t)} = |H( f )|eiθ( f ). (2.3)

�cos{h(t)} and �sin{h(t)} are called the cosine transform and the sine transform, respectively,
of h(t).

|H( f )| =
√

[�cos{h(t)}]2 + [�sin{h(t)}]2 (2.4)

is the amplitude spectrum and

θ( f ) = − arctan
�sin{h(t)}
�cos{h(t)} (2.5)

is the phase spectrum. (Equation 2.5 is valid only when −π/2 ≤ θ ≤ π/2.) The amplitude
spectrum and the phase spectrum are illustrated in Figure 2.1. The inverse Fourier transform
and the Fourier transform can be expressed with the help of the cosine transform and the sine
transform as

�
−1{h(t)} = �cos{h(t)} − i�sin{h(t)} (2.6)
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Copyright © 2001 Wiley-VCH Verlag GmbH
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and

�{H( f )} = �cos{H( f )} + i�sin{H( f )}. (2.7)

Often, i�sin{H( f )} equals zero.

Figure 2.1: The amplitude spectrum |H( f )| and the phase spectrum θ( f ).

In the following, a collection of theorems of Fourier analysis is presented. They contain
the most important characteristic features of Fourier transforms.

2.1 Shift theorem

Let us consider how a shift ± f0 of the frequency of a spectrum H( f ) affects the corresponding
signal h(t), which is the Fourier transform of the spectrum. We can find this by making a
change of variables in the Fourier integral:

�{H( f ± f0)} =
∞∫

−∞
H( f ± f0)e

i2π f t d f

g= f ± f0
dg=d f=

∞∫
−∞

H(g)ei2π(g∓ f0)t dg = e∓i2π f0t

∞∫
−∞

H(g)ei2πgt dg

= h(t)e±i2π f0t .

Likewise, we can obtain the effect of a shift ±t0 of the position of the signal h(t) on the
spectrum H( f ), which is the inverse Fourier transform of the signal.

These results are called the shift theorem. The theorem states how the shift in the position
of a function affects its transform. If H( f ) = �

−1{h(t)}, and both t0 and f0 are constants,
then

�{H( f ± f0)} = �{H( f )}e∓i2π f0t = h(t)e∓i2π f0t ,

�
−1{h(t ± t0)} = �

−1{h(t)}e±i2π f t0 = H( f )e±i2π f t0 .
(2.8)
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This means that the Fourier transform of a shifted function is the Fourier transform of the
unshifted function multiplied by an exponential wave or phase factor. The same holds true for
the inverse Fourier transform.

If a function is shifted away from the origin, its transform begins to oscillate at the
frequency given by the shift. A shift in the location of a function in one domain corresponds
to multiplication by a wave in the other domain.

2.2 Similarity theorem

Let us next examine multiplication of the frequency of a spectrum by a positive real constant a.
We shall take the Fourier transform, and apply the change of variables:

�{H(a f )} =
∞∫

−∞
H(a f )ei2π f t d f

g=a f
dg=ad f=

∞∫
−∞

1

a
H(g)ei2πgt/a dg

= 1

a
h(t/a).

The inverse Fourier transform of a signal can be examined similarly.
We obtain the results that if H( f ) = �

−1{h(t)}, and a is a positive real constant, then

�{H(a f )} = 1

a
h(t/a), (2.9)

and

�
−1{h(at)} = 1

a
H( f/a). (2.10)

These statements are called the similarity theorem, or the scaling theorem, of Fourier trans-
forms. The theorem tells that a contraction of the coordinates in one domain leads to a
corresponding stretch of the coordinates in the other domain.

If a function is made to decay faster (a > 1), keeping the height constant, then the Fourier
transform of the function becomes wider, but lower in height. If a function is made to decay
slower (0 < a < 1), its Fourier transform becomes narrower, but taller. The same applies to
the inverse Fourier transform �

−1.
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2.3 Modulation theorem

The modulation theorem explains the behavior of the Fourier transform when a function is
modulated by multiplying it by a harmonic function. A straightforward computation gives
that

�{H( f ) cos(2π t0 f )} =
∞∫

−∞
H( f ) cos(2π t0 f )ei2π f t d f

=
∞∫

−∞
H( f )

ei2π t0 f + e−i2π t0 f

2
ei2π f t d f

= 1

2

∞∫
−∞

H( f )ei2π(t+t0) f d f + 1

2

∞∫
−∞

H( f )ei2π(t−t0) f d f

= 1

2
h(t + t0) + 1

2
h(t − t0).

A similar result can be obtained for the inverse Fourier transform.
Consequently, we obtain that if H( f ) = �

−1{h(t)}, and t0 and f0 are real constants, then

�{H( f ) cos(2π t0 f )} = 1

2
h(t + t0) + 1

2
h(t − t0), (2.11)

and

�
−1{h(t) cos(2π f0t)} = 1

2
H( f + f0) + 1

2
H( f − f0). (2.12)

These results are the modulation theorem. The Fourier transform of a function multiplied by
cos(2π t0 f ) is the average of two Fourier transforms of the original function, one shifted in the
negative direction by the amount t0, and the other in the positive direction by the amount t0.
The inverse Fourier transform is affected by harmonic modulation in a similar way.

2.4 Convolution theorem

The convolution of functions g(t) and h(t) is defined as

g(t) ∗ h(t) =
∞∫

−∞
g(u)h(t − u) du. (2.13)

This convolution integral is a function which varies with t . It can be thought as the area of the
product of g(u) and h(t − u), varying with t . One of the two functions is folded backwards:
h(−u) is the mirror image of h(u), reflected about the origin. This is illustrated in Figure 2.2.
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Figure 2.2: The principle of convolution. Convolution of the two functions g(t) and h(t) (upper curves)
is the area of the product g(u)h(t − u) (the hatched area inside the lowest curve), as a function of the
shift t of h(−u).

The function g can be thought to be an object function, which is convolved by the other,
convolving function h. The convolving function is normally a peak-shaped function, and the
effect of the convolution is to smear the object function. If also the object function is peak-
shaped, then the convolution broadens it.

Convolution is always broader than the broadest of the two functions which are convolved.
Convolution is also always smoother than the smoothest of the two functions. Convolution
with Dirac’s delta function is a special borderline case:

δ(t) ∗ f (t) = f (t), (2.14)

and thus convolution with Dirac’s delta function is as broad and as smooth as the second
function.
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Convolution can be shown to have the following properties:


h ∗ g = g ∗ h (commutative),
h ∗ (g ∗ k) = (h ∗ g) ∗ k (associative),
h ∗ (g + k) = (h ∗ g) + (h ∗ k) (distributive).

(2.15)

Let us examine the Fourier transform and the inverse Fourier transform of a product of two
functions. If H( f ) = �

−1{h(t)}, and G( f ) = �
−1{g(t)}, then it is can be shown (Problem 5)

that

�{H( f )G( f )} = �{H( f )} ∗ �{G( f )} = h(t) ∗ g(t),

�
−1{h(t) ∗ g(t)} = �

−1{h(t)}�−1{g(t)} = H( f )G( f )
(2.16)

and

�
−1{h(t)g(t)} = H( f ) ∗ G( f ),

�{H( f ) ∗ G( f )} = h(t)g(t).
(2.17)

These equations are the convolution theorem of Fourier transforms. They can be verified
either by a change of variables of integration or by applying Dirac’s delta function. The
convolution theorem states that convolution in one domain corresponds to multiplication in
the other domain.

The Fourier transform of the product of two functions is the convolution of the two
individual Fourier transforms of the two functions. The same holds true for the inverse Fourier
transform: the inverse Fourier transform of the product of two functions is the convolution of
the individual inverse Fourier transforms.

On the other hand, the Fourier transform of the convolution of two functions is the product
of the two individual Fourier transforms. And the inverse Fourier transform of the convolution
of two functions is the product of the two individual inverse Fourier transforms.

2.5 Power theorem

The complex conjugate u* of a complex number u is obtained by changing the sign of its
imaginary part, that is, by replacing i by −i .

If h(t) and H( f ), and g(t) and G( f ) are Fourier transform pairs, then
∞∫

−∞
h(t)g∗(t) dt =

∞∫
−∞

∞∫
−∞

[
H( f )ei2π f t d f

]
g∗(t) dt

=
∞∫

−∞
H( f )


 ∞∫
−∞

g(t)e−i2π f t dt


∗

d f

=
∞∫

−∞
H( f )G∗( f ) d f.
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This result,

∞∫
−∞

h(t)g∗(t) dt =
∞∫

−∞
H( f )G∗( f ) d f, (2.18)

is called the power theorem of Fourier transforms: the overall integral of the product of a
function and the complex conjugate of a second function equals the overall integral of the
product of the transform of the function and the complex conjugate of the transform of the
second function.

2.6 Parseval’s theorem

The Parseval’s theorem can be deduced from the power theorem (Equation 2.18) by choosing
that h = g. We obtain that

∞∫
−∞

|h(t)|2 dt =
∞∫

−∞
|H( f )|2 d f. (2.19)

The area under the squared absolute value of a function is the same as the area under the
squared absolute value of the Fourier transform of the function.

2.7 Derivative theorem

The derivative theorem states the form of the Fourier transform of the derivative of a function.
Differentiating, with respect to t , both sides of equation

h(t) = �{H( f )} =
∞∫

−∞
ei2π f t H( f ) d f, (2.20)

we obtain that

dh(t)

dt
= h(1)(t) =

∞∫
−∞

(i2π f )ei2π f t H( f ) d f. (2.21)

Repetition of this operation k times yields

dkh(t)

dtk = h(k)(t) =
∞∫

−∞
(i2π f )kei2π f t H( f ) d f. (2.22)
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On the other hand,

∞∫
−∞

(i2π f )kei2π f t H( f ) d f = �

{
(i2π f )k H( f )

}
. (2.23)

Taking inverse Fourier transforms of both sides of Equations 2.22 and 2.23 yields

�
−1

{
dkh(t)

dtk

}
= (i2π f )k H( f ). (2.24)

If a function is differentiated k times, its inverse Fourier transform is multiplied by (i2π f )k .
Likewise, it can be shown that

�

{
dk H( f )

d f k

}
= (−i2π t)kh(t). (2.25)

2.8 Correlation theorem

The cross correlation between two functions h(t) ja g(t) is defined as

x(t) = h(t)� g(t) =
∞∫

−∞
h∗(u − t)g(u) du =

∞∫
−∞

h∗(u)g(u + t) du. (2.26)

The cross correlation function is essentially different from the convolution function, because
in cross correlation none of the functions is folded backwards. The cross correlation does
generally not commute: h(t)� g(t) 	= g(t)� h(t).

The correlation theorem states that if h(t) and H( f ), and g(t) and G( f ), are Fourier
transform pairs, then

�{H∗( f )G( f )} = h(t)� g(t) =
∞∫

−∞
h∗(u)g(u + t) du,

�
−1{h∗(t)g(t)} = H( f )� G( f ) =

∞∫
−∞

H∗(v)G(v + f ) dv.

(2.27)

This resembles the convolution theorem, Equations 2.16 and 2.17, but now the first function
H( f ) of the product H( f )G( f ) is replaced by its complex conjugate H∗( f ). The correlation
theorem may be verified either by change of variables of integration or by applying Dirac’s
delta function. It can also be derived from the convolution theorem (Problem 8).
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2.9 Autocorrelation theorem

If cross correlation of a function (Equation 2.26) is taken with the function itself, the operation
is called autocorrelation. The autocorrelation function of function h(t) is

a(t) = h(t)� h(t) =
∞∫

−∞
h∗(u − t)h(u) du. (2.28)

If we set H( f ) = G( f ) in the correlation theorem (Equation 2.27), we obtain that

�

{
|H( f )|2

}
= h(t)� h(t). (2.29)

Similarly,

�
−1

{
|h(t)|2

}
= H( f )� H( f ). (2.30)

These equations are the autocorrelation theorem of Fourier transforms.
The power spectrum |H( f )|2 of the signal h(t) is the square of the amplitude spectrum

|H( f )| in Equation 2.4. It is equal to the inverse Fourier transform of the autocorrelation
function:

|H( f )|2 = �
−1{h(t)� h(t)}. (2.31)

The power spectrum is used when the phase spectrum θ( f ) can be omitted. This is the case
in the examination of noise, shake, seismograms, and so forth.

Example 2.1: Tex Willer shoots six shots in one second and then loads his revolver for four
seconds. These periods of five seconds repeat identically for the whole duration of one minute
of a gunfight. Calculate the power spectrum of the sounds of the shooting.

Solution. We can assume that the sounds of the shots are so short that they can be considered
Dirac’s delta peaks. The inverse Fourier transform of one Dirac’s delta peak at t = t0 is the
f -domain function

�
−1{δ(t − t0)} =

∞∫
−∞

δ(t − t0)e
−i2π t f dt = e−i2π t0 f .

Since a power spectrum is not affected by a shift, which is easy to see by absolute squaring
of the shift theorem in Equation 2.8, we can choose the origin freely. Let us define that t = 0
at the beginning of the gunfight. Let us denote τ = 0.2 s, and T = 5 s. The spectrum of the
12 periods of six shots is[

e−i2π0 f + e−i2πτ f + · · · + e−i2π5τ f
]

+ e−i2πT f
[
e−i2π0 f + · · · + e−i2π5τ f

]
+ · · · + e−i2π11T f

[
e−i2π0 f + · · · + e−i2π5τ f

]
=

11∑
n=0

e−i2πnT f
5∑

m=0

e−i2πmτ f = S1 S2.
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We can calculate the sums:

S1 = 1 − e−i2π12T f

1 − e−i2πT f
= e−iπ11T f sin(12πT f )

sin(πT f )
,

and

S2 = 1 − e−i2π6τ f

1 − e−i2πτ f
= e−iπ5τ f sin(6πτ f )

sin(πτ f )
.

Consequently, the power spectrum is

|S1|2|S2|2 =
[

sin(12πT f )

sin(πT f )

]2 [ sin(6πτ f )

sin(πτ f )

]2

.

Example 2.2: Compute the Fourier transform �{G( f )}, where

G( f ) =
{

sin2(π f/ fm), | f | ≤ fm,

0, | f | > fm .

Solution. G( f ) is a sin2 function truncated by a boxcar function:

G( f ) = �2 fm ( f ) sin2(π f/ fm).

We know that sin2(A) = 1
2 − 1

2 cos(2A). Consequently,

g(t) = �{G( f )} = �{�2 fm ( f ) sin2(π f/ fm)}
= 1

2
�{[1 − cos(2π f/ fm)] �2 fm ( f )}.

Applying the modulation theorem, and writing h(t) = �{�2 fm ( f )} = 2 fm sinc(2π fmt), we
obtain that

g(t) = 1

2
h(t) − 1

4
h(t − 1

fm
) − 1

4
h(t + 1

fm
)

= fm sinc(2π fmt) − fm

2
sinc

[
2π fm(t − 1

fm
)

]

− fm

2
sinc

[
2π fm(t + 1

fm
)

]
.

Problems

1. Show that if a function f is symmetric about a point a and a function g is symmetric
about a point b, then f ∗ g is symmetric about the point a + b.

2. Show that successive convolution and cross correlation have the following property:

(h ∗ g)� e = h � (g � e).
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3. Show that autocorrelation function h � h is always conjugate symmetric, i.e.,

(h � h)(−t) = [h(t)� h(t)]∗ ,

where (h � h)(−t) means the value of h � h at the point −t .

4. Compute the convolution function �2T (t)∗�2T (t), where �2T (t) is the boxcar function

�2T (t) =
{

1, |t | ≤ T,

0, |t | > T .

Plot the result.

5. Prove that �{H( f )G( f )} = �{H( f )} ∗ �{G( f )} (the convolution theorem).

6. Show that the power spectrum of a real signal is always symmetric.

7. Formulate the modulation theorem for sine modulation, i.e., determine the transform

�
−1{h(t) sin(2π f0t)}.

8. Let us assume that we know the convolution theorem �
−1{h(t) ∗ g(t)} = H( f )G( f ).

Derive from it the correlation theorem �
−1{h(t)� g(t)} = H∗( f )G( f ).

9. Find the inverse Fourier transforms of the following functions:

10. Find the Fourier transform of the triangular function

�T (t) =
{

1 − |t |
T

, |t | ≤ T,

0, |t | > T .

Use the Fourier transform of a boxcar function and the convolution theorem. It is recom-
mended that you solve Problem 4 first. (This triangular function is symmetric, and hence
� and �−1 are the same.)

11. Applying the derivative theorem, compute �−1
{
t exp

(−π t2
)}

.
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12. A signal consists of two cosine waves, which both have an amplitude A. The frequencies
of the waves are f1 and f2. Derive the inverse Fourier transform of a differentiated signal,

(a) by first differentiating the signal and then making the transform �
−1,

(b) by first transforming the original signal and then applying the derivative theorem.

13. Applying Fourier transforms, compute the following integrals:

(a)

∞∫
−∞

sinc4 x dx ,

(b)

∞∫
−∞

exp
(
−πx2

)
cos(2πax) dx , where a is a real constant.

14. Applying Fourier transforms, compute the integral

∞∫
−∞

sin3 x

x3
dx .

Hint: Use the power theorem.

15. Applying Fourier transforms, compute the integral

∞∫
0

x2 dx

(x2 + a2)2
, where a is a constant.

Hint: Use the Parseval’s theorem and the derivative theorem.



3 Discrete Fourier transform

In practical measurements we do not deal with functions which are expressed as explicit
mathematical expressions whose Fourier transforms are known. Instead, Fourier transforms
are computed numerically. In practice, the measurement of a signal usually gives us a finite
number of data, measured at discrete points. Consequently, also the integrals of Fourier
transforms must be approximated by finite sums. The integral from −∞ to +∞ is replaced
by a sum from −N to N − 1. A Fourier transform calculated in this way is called a discrete
Fourier transform.

Calculation of a discrete Fourier transform is possible, if we record the signal h(t) at 2N
equally spaced sampling points

t j = j�t, j = −N , −N + 1, −N + 2, . . . , −1, 0, 1, . . . , N − 1. (3.1)

Generally, the recorded signal is a real function. If the signal is real and symmetric, then,
according to Equation 2.2, also the spectrum H( f ) is real and symmetric, and

H(− f ) = H( f ). (3.2)

The spectrum calculated from the discrete signal samples is given by a discrete approxi-
mation of H( f ) in Equation 2.2. The obtained spectrum is

H�t
T ( f ) = �t

N−1∑
j=−N

h( j�t)e−i2π f j�t , (3.3)

where T = N�t .
It is clear that a signal which consists of data at a finite number of discrete points can-

not contain the same amount of information as an infinitely long, continuous signal. This,
inevitably, leads to some distortions, compared to the true case. In the following, we shall
examine these distortions.

Fourier Transforms in Spectroscopy. J. Kauppinen, J. Partanen
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3.1 Effect of truncation

The sum in Equation 3.3 covers only a finite segment (−T, T ) of the signal h(t), unlike the
Fourier integral, which extends from −∞ to +∞. Let us consider what is the effect of this
approximation, the truncation of the signal, on the spectrum.

The truncated signal can be thought as the product of the original signal h(t) and a
truncation function, which is the boxcar function �2T (t)

�2T (t) =
{

1, |t | ≤ T,

0, |t | > T .
(3.4)

The boxcar function is illustrated in Figure 3.1.

Figure 3.1: The boxcar signal truncation function �2T (t).

The spectrum of the truncated signal is the convolution

HT ( f ) = �
−1{�2T (t)h(t)} = �

−1{�2T (t)} (2.17)∗ �
−1{h(t)}

= �
−1{�2T (t)} ∗ H( f ). (3.5)

The true spectrum H( f ) is convolved by the inverse Fourier transform of the truncation
function. The inverse Fourier transform of �2T (t) is

�
−1{�2T (t)} =

T∫
−T

e−i2π f t dt = 2T sinc(2π f T ) = WT ( f ), (3.6)

where the sinc function

sinc x = sin x

x
. (3.7)

(In the literature, one can sometimes find the definition sinc x = sin(πx)/x, but this definition
would lead to impractical expressions in our case.) The function WT ( f ) is called the instru-
mental function of truncation. It is the sinc function shown in Figure 3.2. Thus, the effect
of truncation of the signal on the spectrum is that the true spectrum is convolved by a sinc
function:

HT ( f ) = 2T sinc(2π f T ) ∗ H( f ). (3.8)
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Figure 3.2: The inverse Fourier transform of the boxcar function �2T (t), which is the instrumental
function of truncation WT ( f ) = �

−1{�2T (t)} = 2T sinc(2π f T ).

Example 3.1: Examine the cosine wave h(t) = cos(2π f0t), its inverse Fourier transform, and
the effect of truncation of the wave.

Solution. With the help of the Euler’s formula, and the linearity of Fourier transforms, we
obtain that

�
−1{h(t)} = �

−1{cos(2π f0t)} = 1

2
�

−1{ei2π f0t } + 1

2
�

−1{e−i2π f0t }. (3.9)

According to Equation 1.14, �{δ( f )} = 1. This and the shift theorem (Equation 2.8) yield

�{δ( f ± f0)} = �{δ( f )}e∓i2π f0t = e∓i2π f0t . (3.10)

From Equations 3.9 and 3.10 we see that the inverse Fourier transform of h(t) = cos(2π f0t)
is H( f ) = 1

2 δ( f − f0) + 1
2 δ( f + f0). The cosine wave function and its inverse Fourier

transform, in the absence of truncation, are shown in Figure 3.3. This same result would also
be given by the modulation theorem, Equation 2.12, by setting h(t) = 1, and using the fact
that �−1{1} = δ( f ).

Generally, the convolution of δ( f ± f0) with another function is

δ( f ± f0) ∗ G( f ) =
∞∫

−∞
δ(u ± f0)G( f − u) du = G( f ± f0). (3.11)
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Thus, the spectrum of a truncated cosine wave is

HT ( f ) = 2T sinc(2π f T ) ∗ H( f ) = T sinc [2π( f − f0)T ] + T sinc [2π( f + f0)T ] .

(3.12)

This function, consisting of two sinc functions, is shown in Figure 3.4. The effect of the
truncation of a cosine wave is that Dirac’s delta functions of the spectrum are smeared to sinc
functions.

Figure 3.3: Infinitely long cosine wave h(t) = cos(2π f0t), and its inverse Fourier transform H( f ),
which consists of two Dirac’s delta functions 1

2 δ( f + f0) and 1
2 δ( f − f0).

Figure 3.4: The spectrum of a truncated cosine wave HT ( f ) = 2T sinc(2π f T )∗ H( f ), which consists
of two sinc functions T sinc

[
2π( f + f0)T

]
and T sinc

[
2π( f − f0)T

]
.
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3.2 Effect of sampling

In the calculation of the spectrum in Equation 3.3, the signal h( j�t) is not continuous but
discrete. Let us now consider the effect of discretization on the spectrum.

If samples of the signal h(t) are recorded at points separated by a sampling interval �t ,
assuming no truncation of the signal, the calculated spectrum becomes

H�t ( f ) = �t
∞∑

j=−∞
h( j�t)e−i2π f j�t . (3.13)

Clearly,

exp

[
−i2π

(
f + 1

�t

)
j�t

]
= exp(−i2π f j�t),

if j is an integer. Consequently, we can see that H�t
(

f + 1
�t

)
= H�t ( f ). Thus, the

spectrum of a signal sampled with the sampling interval �t is periodic with the period 1/(�t).

At every discrete sample point t j = j�t , the waves ei2π f t and ei2π( f +n 1
�t )t , where n is an

integer, always obtain the same value. It is natural that these waves cannot be distinguished in
the calculated spectrum, because there is no sufficient information. In the calculated spectrum,
the contributions of all the waves at frequencies f + n 1

�t are therefore superimposed. This
phenomenon is demonstrated in Figure 3.5 for cosine waves.

The spectrum of a sampled signal can be written as

H�t ( f ) =
∞∑

k=−∞
H

(
f − k

�t

)
. (3.14)

This means that the spectrum of a sampled signal consists of a set of functions H( f ), repeated
at intervals 1/(�t). The functions H( f − k

�t ) with various k are called the spectral orders
of h(t).

If the signal, in addition to being discrete, is also truncated, we obtain that

H�t
T ( f ) =

∞∑
k=−∞

HT

(
f − k

�t

) (3.8)
(3.11)=

∞∑
k=−∞

2T sinc

[
2π

(
f − k

�t

)
T

]
∗ H( f )

= W�t
T ( f ) ∗ H( f ), (3.15)

where W�t
T is the instrumental function of discrete (numerical) transform

W�t
T ( f ) =

∞∑
k=−∞

2T sinc

[
2π

(
f − k

�t

)
T

]
. (3.16)

The effects of truncation and sampling on a continuous spectrum are demonstrated in
Figure 3.6. In the figure, it is assumed that the true continuous spectrum is limited to a
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Figure 3.5: A signal h(t) consists of cosine waves, whose spectrum is H( f ). The signal is sampled with
the sampling interval 1/(2 fmax), which is one quarter of the period of the lowest frequency fmax/2.
Cosine waves shown in the figure cannot be distinguished at the sample points, and in the calculated
discrete spectrum they will all be superimposed.

band [− fmax, fmax]. The corresponding signal h(t) = �{H( f )} is truncated with a boxcar
function at the point T (� 1/ fmax). The convolution of the instrumental function of truncation
and the true spectrum is WT ( f )∗H( f ) = 2T sinc(2π f T )∗H( f ). Since the truncation boxcar
is large (T � 1/ fmax), the instrumental function WT ( f ) is narrow (see Figure 3.2), and the
spectrum is barely distorted by truncation. Samples of the signal are taken in the interval
�t (< 1/2 fmax). Because of the sampling, the function WT ( f ) ∗ H( f ) is repeated in the
intervals 1/(�t). The spectrum of the truncated, discrete signal is shown in the lower part of
Figure 3.6.
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Figure 3.6: The true continuous spectrum H( f ) and the corresponding signal h(t) = �{H( f )}. The
signal is truncated with a boxcar function at the point T , and samples of the signal are taken in the
interval �t . The lower part of the picture shows the spectrum H�t

T ( f ) of the truncated, discrete signal.

The critical sampling interval is

�t = 1

2 fmax
, (3.17)

where fmax is the maximum frequency of the true spectrum. If the sampling interval is smaller
than this critical interval, then the spectral orders of the sampled signal do not overlap, and
the spectrum is of the type shown in Figure 3.6, where the repeating functions WT ( f ) ∗ H( f )

are clearly distinct. The spectrum H�t
T ( f ) of a signal which is sampled at exactly the critical

sampling interval is shown in Figure 3.7. In this case, the period of the spectrum H�t
T ( f ) is

exactly equal to the bandwidth 2 fmax of the true spectrum.



42 3 Discrete Fourier transform

Figure 3.7: The spectrum H�t
T of a truncated, discrete signal, when the sampling interval is exactly the

critical sampling interval, �t = 1/(2 fmax).

The sampling is called undersampling, if the sampling interval �t > 1/(2 fmax). In this
case, the period 1/(�t) of the spectrum H�t

T ( f ) is smaller than the bandwidth 2 fmax of the
true spectrum H( f ). Then, the portion of the spectrum with | f | > 1/(2�t) is aliased into the
basic period [−1/(2�t), 1/(2�t)] and thus overlaps with the spectral information originally
located in this interval. Thereby, a distorted spectrum H�t

T ( f ) is obtained. Figure 3.8 demon-
strates the spectrum in the case where the sampling interval has been larger than the critical
sampling interval.

Figure 3.8: The spectrum H�t
T which is distorted by aliasing because the sampling interval is larger

than the critical sampling interval, i.e., �t > 1/(2 fmax).

The critical sampling frequency

fN = 1

�t
= 2 fmax (3.18)

is called the Nyquist frequency.

Example 3.2: Examine the effect of discrete sampling on the inverse Fourier transform of the
truncated cosine wave.

Solution. The inverse Fourier transform of a continuous cosine wave was shown in Figure 3.3.
It is the monochromatic spectrum �

−1{cos(2π f0t)} = 1
2 δ( f + f0) + 1

2 δ( f − f0) = H( f ).
The effect of truncation of the cosine wave is that Dirac’s delta functions of the spectrum are
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replaced by sinc functions, as shown in Figure 3.4. The effect of a sampling interval �t of
the cosine wave is that the sinc functions of the spectrum are repeated in the intervals 1/(�t).
The spectrum of the truncated, discrete cosine wave is shown in Figure 3.9.

Figure 3.9: The spectrum H�t
T ( f ) = W�t

T ( f ) ∗ 1

2
[δ( f + f0) + δ( f − f0)] =

∞∑
k=−∞

T sinc

[
2π

(
f − f0 − k

�t

)
T

]
+

∞∑
l=−∞

T sinc

[
2π

(
f + f0 − l

�t

)
T

]
of the truncated,

discrete (sampling interval �t) cosine wave cos(2π f0t).

3.3 Discrete spectrum

The spectrum H�t
T ( f ) is a continuous function of f , and it can be computed at any value of f .

In practice, however, it is computed only at a finite number of points. If the signal consists of
2N signal data, it is sufficient to calculate 2N spectral data in order to preserve all information
that we have. Computation of more spectral data is pure interpolation. In practice, not only
the signal is discrete but also the spectrum is discrete.

If the spectrum is calculated at the points

fk = ±k� f, (3.19)

where k is an integer, then the corresponding signal h(t) = �{H( f )} is periodic with the
period 1/(� f ). This is analogous to what was discussed above, only now the meanings of
h(t) and H( f ) have been changed. Analogously to Equation 3.17, we can find the critical
computing interval

� f = 1

2T
(3.20)

for the spectrum of a signal whose period is 2T . The critical computing interval is the
minimum computing interval which must be used in the calculation of the spectrum in such
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a way that all information in the signal segment (−T, T ) is preserved. This situation is
illustrated in Figure 3.10. The number of data points in the period 2 fmax (critical sampling)
of the spectrum or in the period 2T of the signal is

2 fmax/(� f ) = 2 fmax2T = 2T/(�t) = 2N , (3.21)

which ensures the conservation of the information.

Figure 3.10: One period of the signal h(t) and one period of its spectrum H�t
T ( f ) in the case where

all information is preserved in the discrete Fourier transforms. Both the signal and the spectrum consist
of 2N data, T = N�t , �t = 1/(2 fmax) and � f = 1/(2T ). In this case fmax/(� f ) = 2T fmax =
2T/(2�t) = N . (Compare Fig. 4.1.)

If the computing interval � f > 1/(2T ), some information is lost, and if � f < 1/(2T ),
an interpolation is made without increasing information.

Since the signal in discrete Fourier transform consists of discrete data, it can be regarded
as a signal vector h, whose length is the number of sampled data points. In the same way, the
spectrum which is calculated at discrete points can be treated as a vector H, whose length is
the number of computed data. H is the discrete inverse Fourier transform of h.
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Example 3.3: Show that the discrete inverse Fourier transform of the discrete convolution

h′
k = �t

M−1∑
j=0

g j hk− j

is given by

H ′
p = G p Hp,

where the vectors H′ (consisting of data H ′
p), H (consisting of data Hp), and G (consisting of

data G p), are the discrete inverse Fourier transforms of the vectors h′ (consisting of data h′
k),

h (consisting of data hk ), and g (consisting of data gk), respectively. M is the number of data
in each vector. The vectors are regarded as infinitely long vectors with the M data repeating
periodically.

Solution. Let us compute the discrete inverse Fourier transform of h′:

H ′
p = �t

M−1∑
k=0

h′
ke−i2πpk/M

= �t2
M−1∑
k=0

M−1∑
j=0

g j hk− j e
−i2πpk/M

r=k− j= �t2
M−1∑
j=0

M− j−1∑
r=− j

g j hr e−i2πpr/M e−i2πpj/M

(periodicity)= �t
M−1∑
j=0

g j e
−i2πpj/M�t

M−1∑
r=0

hr e−i2πpr/M

= G p Hp.

This result is the convolution theorem for the discrete Fourier transform.

Example 3.4: Due to limitations of the central memory of the computer, the signal vector h
(number of data 2N ) must be divided into four partial vectors before inverse Fourier transfor-
mation. These partial vectors a, b, c and d are each transformed separately. Each of the partial
vectors consists of every fourth piece of the original data, a starting from h0, b starting from
h1, c starting from h2, and d starting from h3. How is the discrete inverse Fourier transform
of the original signal vector h obtained from the transforms of the partial vectors?

Solution. Let us denote wM = ei2π/M . The discrete inverse Fourier transforms of the partial
vectors are (k = 0, . . . , N

2 − 1):

Ak = �t

N
2 −1∑
j=0

a jw
− jk
N
2

= �t

N
2 −1∑
j=0

h4 jw
− jk
N
2

,
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Bk = �t

N
2 −1∑
j=0

b jw
− jk
N
2

= �t

N
2 −1∑
j=0

h4 j+1w
− jk
N
2

,

Ck = �t

N
2 −1∑
j=0

h4 j+2w
− jk
N
2

, and

Dk = �t

N
2 −1∑
j=0

h4 j+3w
− jk
N
2

.

The discrete inverse Fourier transforms of the original signal vector is:

Hk = �t
2N−1∑

j=0

h jw
− jk
2N

= �t

N
2 −1∑
j=0

h4 jw
−4 jk
2N + w−k

2N �t

N
2 −1∑
j=0

h4 j+1w
−4 jk
2N

+ w−2k
2N �t

N
2 −1∑
j=0

h4 j+2w
−4 jk
2N + w−3k

2N �t

N
2 −1∑
j=0

h4 j+3w
−4 jk
2N .

Since w
−4 jk
2N = w

− jk
N
2

, we obtain that

Hk =




Ak + w−k
2N Bk + w−2k

2N Ck + w−3k
2N Dk, k = 0, . . . , N

2 − 1,

Ak− N
2

+ w−k
2N Bk− N

2
+ w−2k

2N Ck− N
2

+ w−3k
2N Dk− N

2
, k = N

2 , . . . , N − 1,

Ak−N + w−k
2N Bk−N + w−2k

2N Ck−N + w−3k
2N Dk−N , k = N , . . . , 3N

2 − 1,

Ak− 3N
2

+ w−k
2N Bk− 3N

2
+ w−2k

2N Ck− 3N
2

+ w−3k
2N Dk− 3N

2
, k = 3N

2 , . . . , 2N − 1.

Note that since the period of the vectors A, B, C, and D is N/2 data, indices that are too large
have been reduced by subtracting suitable multiples of N/2.

Example 3.5: Find the optimal computing interval for the spectrum of the truncated cosine
wave.

Solution. If the cosine wave is truncated at the point t = T , then the spectrum consists of the
sinc functions of Figure 3.4. According to Equation 3.20, the critical computing interval of
the spectrum is � f = 1

2T . As shown in Figure 3.11, this computing interval gives the data
points for the sinc function in an optimal way.
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Figure 3.11: Optimally chosen data points for the sinc function. This means that the computing interval
is � f = 1/(2T ). Here f0 is an integer multiple of � f , i.e., the sinc function is situated exactly at one
of the spectral sampling points.

Problems

1. The inverse Fourier transformation of a signal gave the following symmetric spectrum.
Outline the plot of the spectrum which is obtained if only every second datum of the
signal is picked out, and these data, whose number is only half of the original, are
transformed.

2. The detector takes samples of the signal at constant intervals at the points k�t , where k
is an integer. Let fmax = 1/(2�t). f0 is a frequency in the interval − fmax ≤ f0 < fmax.

(a) Show that the frequency f0 + p2 fmax, where p is an integer, is aliased at f0.

(b) Let us assume that we have an integrating detector and the kth sample is obtained
by integrating the signal from k�t to (k + 1)�t . Show that also in this case the
frequency f0 + p2 fmax is aliased at f0, but it has been damped, the more the larger
|p| is.

Hint: Consider exponential waves ei2π f t .
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3. The spectrum G( f ) of a time-dependent signal g(t) is band-limited in such a way that
G( f ) = 0 at | f | ≥ f0.

(a) Show that if F ≥ f0, then G = �2F

(
1

2F
�2F ∗ G

)
, where

�2F ( f ) =
{

1, | f | ≤ F,

0, | f | > F,

and�2F ( f ) is the comb function of period 2F , i.e.,

�2F ( f ) =
∞∑

j=−∞
2F δ( f − j2F).

(b) Applying the result of (a), show that if the function g(t) is known at points k�t ,
where k is an arbitrary integer and �t ≤ 1/(2 f0), then these samples define the
value of the function g(t) everywhere. (This result is called the sampling theorem.)

Hint: �{�2F } = �
−1{�2F } = 2F�1/(2F).

4. Radio Turku broadcasts at the frequency 94.3 MHz and Radio Hundred broadcasts at the
frequency 100.1 MHz. Find the three smallest sampling intervals �t which alias these
stations on each other.

5. The discrete inverse Fourier transform converts the vector h of length M , consisting of
data h j , to the vector H of length M , consisting of data Hk , where

Hk = �t
M−1∑
j=0

h jw
−k j
M , k = 0, . . . , M − 1,

and wM = ei2π/M . Since this transform is linear, it corresponds to multiplication of the
vector by a matrix. Formulate the matrices of the � and �−1 transforms, and show that
the product of these matrices is the identity matrix.

6. Let us define the norm of the sample vector of a complex function in t-domain as

‖C‖ =
√

�t CHC,

where superscript H means conjugate transposition. Prove the following, discrete form
of the Parseval’s theorem:

Let H = �tW−h, where �tW− is the matrix of the discrete inverse Fourier transform
(�−1 transform, see the previous problem). Then ‖H‖2 = ‖h‖2.
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4.1 Basis of FFT

The number of sampled values available for the computation of a discrete Fourier transform
is often very large. The computation of the transform is an extremely laborious task, if a
direct method of computation is employed. The computation is significantly easier, if it is
simplified by a suitable algorithm. The most practical algorithm for this purpose is the fast
Fourier transform, FFT. In the following, we shall examine this algorithm, starting from the
basic definition of the Fourier transform pair.

The Fourier transform pair H( f ) and h(t) was defined as

h(t) =
∞∫

−∞
H( f )ei2π f t d f = �{H( f )}, (4.1)

H( f ) =
∞∫

−∞
h(t)e−i2π f t dt = �

−1{h(t)}, (4.2)

where H( f ) is the spectrum and h(t) is the signal. For the computation of the discrete
transform, the signal data h j were assumed to be recorded in equal intervals at points

t j = j�t, j = −N , −N + 1, −N + 2, . . . , −1, 0, 1, . . . , N − 1, (4.3)

where j and N are integers. If T = N�t , the spectrum, computed from the data h j , is given
by Equation 3.15:

H�t
T ( f ) =

∞∑
k=−∞

2T sinc

[
2π

(
f − k

�t

)
T

]
∗ H( f ). (4.4)

The spectrum H�t
T ( f ) is periodic with the period 1/(�t), and smoothed by the sinc function

so that the fine structure smaller than 1/(2T ) is partly lost.
All necessary information must be included in one period of the spectrum H�t

T ( f ). For
this purpose, we must, as was explained in the previous section, use at least the critical
sampling frequency of the signal

1

�t
= 2 fmax, (4.5)
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where 2 fmax is the Nyquist frequency. If also the spectrum H( f ) is computed in equal
intervals, at points

fk = ±k� f, (4.6)

where k is an integer, then the signal h(t) must also be periodic, its period being 1/(� f ). The
2N data points of Equation 4.3 cover exactly one period in the signal domain (t-domain), if

1

� f
= 2T, (4.7)

that is,

� f = 1

2T
. (4.8)

The number of data points in one period of the spectrum H�t
T ( f ) is

2 fmax

� f
= 2T 2 fmax︸ ︷︷ ︸

1/(�t)

= 2T
1

�t
= 2N , (4.9)

which is the same number as the number of data points in one period of the signal.
The situation where the discrete transform is used in such a way that both the signal and

the spectrum are known at 2N points in equal intervals is illustrated in Figure 4.1. (The true
spectrum H( f ) or the true signal h(t) may coincide with H�t

T ( f ) or h� f
fmax

(t), respectively, in
any period.)

If the signal is known at 2N points in the intervals �t = 1/(2 fmax) and the spectrum at
2N points in the intervals � f = 1/(2T ), then the Fourier transform pair of Equations 4.1
and 4.2 can be written in the discrete form (we include in the sums exactly one period, if we
take the summation from −N to N − 1, not to N )

h j =
N−1∑

k=−N

Hkeiπ jk/N � f, (4.10)

Hk =
N−1∑

j=−N

h j e
−iπ jk/N �t, (4.11)

where {
h j = h� f

fmax
( j�t), j = −N , . . . , N − 1,

Hk = H�t
T (k� f ), k = −N , . . . , N − 1,

(4.12)

and the exponent has been rewritten, since

2π f t = 2π k� f︸︷︷︸
f

j�t︸︷︷︸
t

= 2πk j
�t

2T
= π jk/N .
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Figure 4.1: A discrete Fourier transform pair where the signal h� f
fmax

(t) and the spectrum H�t
T ( f ) are

both known in equal intervals. In the figure �t = 1/(2 fmax) and � f = 1/(2T ).

We can write the discrete spectral values

Hk = �t
N−1∑

j=−N

h j e
−iπ jk/N = �t

−1∑
j=−N

h j e
−iπ jk/N + �t

N−1∑
j=0

h j e
−iπ jk/N

= �t
2N−1∑

j=−N+2N

h j e
−iπ jk/N + �t

N−1∑
j=0

h j e
−iπ jk/N

= �t
2N−1∑

j=0

h j e
−iπ jk/N . (4.13)

This means that if the signal is extended periodically, so that always h j = h j+2N , then the
sampling of the signal can be shifted half the period, N , as many times as we wish. Actually,
the start of the sampling of the signal could be shifted anywhere, if the length of the sampling
is the same as the period of the signal. In order to avoid negative indices, the sampling is
often started with j = 0 as in the last form of Equation 4.13. This possibility of shifting
the sampling is illustrated in Figure 4.2. Analogously, the same possibility of shifting half the
period applies to the spectrum.
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Figure 4.2: The sampling of the signal h� f
fmax

(t) can be shifted half of the period. The same applies

to the spectrum H�t
T ( f ). Note that the sums in Equations 4.10 and 4.11 were calculated from −N

to N − 1, not to N , in order to not include the columns behind points t = 2T or f = 2 fmax.

Let us now divide the signal data h j into two parts, one with even j , and the other with
odd j ,

xl = h2l ,

yl = h2l+1,

}
l = 0, 1, 2, . . . , N − 1. (4.14)

We shall denote

Ak = �
−1{xl} = �t

N−1∑
l=0

xle
−i2πkl/N ,

Bk = �
−1{yl} = �t

N−1∑
l=0

yle
−i2πkl/N ,




k = 0, 1, 2, . . . , N − 1. (4.15)

Ak and Bk are N -transforms, that is, they are sums of N components.
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Now we can write the discrete spectrum, which is a 2N -transform, as (compare with
Example 3.4)

Hk = �t
2N−1∑

j=0

h j e
−iπk j/N = �t

N−1∑
l=0

xl︸︷︷︸
h2l

e−iπk(2l)/N + �t
N−1∑
l=0

yl︸︷︷︸
h2l+1

e−iπk(2l+1)/N

= Ak + e−iπk/N Bk . (4.16)

We can see that the 2N -transform can be expressed with the help of two N -transforms.
Very important and useful is, that after we have computed Ak and Bk to obtain Hk until

the index k = N − 1, we can obtain the remaining values of Hk at higher indices using the
same, already calculated values Ak and Bk , because

Hk+N = �t
N−1∑
l=0

xl e−i2πl(k+N )/N︸ ︷︷ ︸
e−i2πlk/N e−i2lπ︸ ︷︷ ︸

1

+�t
N−1∑
l=0

yl e−iπ(2l+1)(k+N )/N︸ ︷︷ ︸
e−i2πkl/N e−iπk/N e−i(2l+1)π︸ ︷︷ ︸

−1

= Ak − e−iπk/N Bk . (4.17)

This means that the computation of the values of the two N -transforms Ak and Bk actually
gives us two values Hk and Hk+N of the 2N -transform, which saves a lot of work, since
calculation of an N -transform is much less laborious than calculation of a 2N -transform.

If we denote wk
N = ei2πk/N , then{

w
−(k±N )
N = w−k

N ,

w
−[k±(N/2)]
N = −w−k

N ,
(4.18)

and we obtain

Hk = Ak + w−k
2N Bk,

Hk+N = Ak − w−k
2N Bk

= Ak + w
−(k+N )
2N Bk,


 k = 0, 1, 2, . . . , N − 1. (4.19)

These formulae are the basis of the fast Fourier transform. With them we can obtain a 2N -
transform by the calculation of two N -transforms.
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4.2 Cooley–Tukey algorithm

If 2N = 2m , where m is a positive integer, then we can repeat the division of the data into two
parts (Equation 4.19) m times. Finally, we arrive in the situation where we need to calculate
the Fourier transform of only one single datum, and it is the datum itself. With the help of
Equation 4.19 we compute N times the Fourier transform of two data, using those 2N Fourier
transforms of one datum. Next, we compute N/2 Fourier transforms of four data using the
N Fourier transforms of two data, then the N/4 Fourier transforms of eight data, and so on
until we have one Fourier transform of 2N data. This method is called the Cooley–Tukey
algorithm. The calculation of a 2N -transform, where 2N = 2m , takes place in m successive
steps, using Equation 4.19 m times.

Let us, as an example, examine the case, where 2N = 23 = 8. In this case m = 3. The
data h j must then be divided to two groups, even and odd, m = 3 times. This is shown in
Table 4.1.

Table 4.1: The grouping of the data h j for FFT. If the number of data is 8, then the division to two
groups must be done three times.

Memory cell Data 1. phase 2. phase 3. phase

0 h0 h0 h0 h0
1 h1 h2 h4 h4
2 h2 h4 h2 h2
3 h3 h6 h6 h6
4 h4 h1 h1 h1
5 h5 h3 h5 h5
6 h6 h5 h3 h3
7 h7 h7 h7 h7

An easy way to make this grouping of the data by computer is to use binary inversion.
This is illustrated in Table 4.2 in the case m = 3. If the binary number of a memory cell is
inverted, the new binary number is the same as the index j of the datum h j which should be
positioned in this memory cell. The binary inversion may be used, if 2N = 2m , where m is an
integer.

After we have divided the data h j into groups in the manner explained, we are able to
employ Equation 4.19 m times. This procedure in the case where m = 3 is illustrated by the
net in Figure 4.3.
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Table 4.2: Binary inversion in the case where the number of data is 8 and the data are positioned in the
memory cells 0, . . . , 7.

Memory cell Bin Inversion Bin Data
0 000 → 000 h0
1 001 → 100 h4
2 010 → 010 h2
3 011 → 110 h6
4 100 → 001 h1
5 101 → 101 h5
6 110 → 011 h3
7 111 → 111 h7

Figure 4.3: The 23 net, which illustrates the FFT procedure in the case where the number of data h j is

N = 8. wN = ei2π/N .
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4.3 Computation time

If the discrete Fourier transform is computed directly, employing Equation 4.11, we are said
to use the direct Fourier transform. The total computation time of the direct Fourier transform
is proportional to

2N × 2N
(

computation time of w
− jk
2N + multiplication time + addition time

)
︸ ︷︷ ︸

Hk

.

In the FFT, the binary inverted data are replaced m times, so that 2N = 2m . The total
computation time is proportional to

m × 2N (computation time of w−k
N + multiplication time + addition time)

+inversion time.

The ratio of the computation times of direct Fourier transform and fast Fourier transform
is, approximately (ignoring the inversion time),

Tdirect

TFFT
≈ 2N

m
= 2N

log2(2N )
. (4.20)

Example 4.1: The number of signal data is 2N = 220 = 1 048 576, and the computation time
taken by FFT is TFFT = 1 hour. What would be the time taken by direct Fourier transform?

Solution. The ratio of the computation times is

Tdirect/TFFT ≈ 52 429,

and this yields

Tdirect = 6 years.

Example 4.2: Write a PASCAL program for fast Fourier transform.

Solution.

const
vectlength = 8192; { = 213 = the maximum number of data points }
pi = 3.141592653589793238462643;

type
realarray = array[0..vectlength − 1] of real;
cmplxarray = record

re :realarray;
im:realarray



4.3 Computation time 57

end;

procedure fft(var d:cmplxarray; n, isign:integer);

(* Procedure fft takes the fast Fourier transform of a complex data vector of length n (indexed
from 0 to n − 1) in d in the direction isign. The result is stored back in d. *)

var
i, istep, j, m, mmax :integer;
ct, st, z, theta, wstpr, wstpi, tr, ti:real;

begin (* fft *)
with d do

begin
j : = 0;
for i : = 0 to n − 1 do

begin
if i < j then

begin
z: = re [i];
re [i] : = re [ j];
re [ j] : = z;
z: = im [i];
im [i] : = im [ j];
im [ j] : = z

end;
m: = n div 2;
while ( j > m) and (m >= 0) do

begin
j : = j − m − 1;
m: = m div 2

end;
j : = j + m + 1

end;
mmax: = 1;
while mmax < n do

begin
istep: = 2 ∗ mmax;
for m: = 1 to mmax do

begin
i : = m − 1;
theta: = isign ∗ pi ∗ (m − 1)/mmax;
ct: = cos(theta);
st: = sin(theta);
while i < n do

begin
j : = i + mmax;
tr: = re [i];
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ti: = im [i];
wstpr: = ct ∗ re [ j] + st ∗ im [ j];
wstpi: = ct ∗ im [ j] − st ∗ re [ j];
re [i] : = tr + wstpr;
im [i] : = ti + wstpi;
re [ j] : = tr − wstpr;
im [ j] : = ti − wstpi;
i : = i + istep

end
end;

mmax: = istep
end;

for i : = 0 to n − 1 do
begin

re [i] : = re [i] /sqrt(n);
im [i] : = im [i] /sqrt(n)

end
end

end; (* fft *)

Problems

1. FFT employs the Nyquist sampling. This means that 2N data of the signal are taken in
constant intervals at points 0, �t, . . . , (2N−1)�t , and the discrete spectrum is calculated
in constant intervals at points 0, � f, . . . , (2N − 1)� f , where N� f = fmax = 1/(2�t).
Show that

(a) the product of the data intervals is �t� f = 1

2N
, and

(b) the product of the lengths of the sampled and computed periods is 2T 2 fmax = 2N .

2. In order to save computer memory, FFT of the real data h j , where j = 0, . . . , 2N − 1, is
calculated by forming N complex numbers ck whose real parts are the even signal data
and imaginary parts the odd signal data:

ck = h2k + ih2k+1, k = 0, . . . , N − 1.

Find the formula which gives the discrete transform of the original data h j with the help
of the transform of the data ck .
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3. The discrete inverse Fourier transform H,

Hk = �t
2N−1∑

j=0

h jw
−k j
2N , k = 0, . . . , 2N − 1,

where w2N = exp

(
i2π

2N

)
, of the vector h = (h0, h1, . . . , h2N−1) is computed by FFT.

What is the inverse Fourier transform vector in the following cases?

(a) h0 = 1

�t
, other components are zero, (this is discrete Dirac’s delta function)

(b) hN = 1

�t
, other components are zero,

(c) h p = h2N−p = 1

2�t
at one value of the index p (0 < p < N ), but other components

are zero,

(d) h p = 1

2�t
, h2N−p = − 1

2�t
at one value of the index p (0 < p < N ), but other

components are zero.



5 Other integral transforms

5.1 Laplace transform

The inverse Laplace transform H0(s) = �
−1
0 {h(t)} of a signal h(t) is defined as

H0(s) =
∞∫

0

h(t)e−st dt = �
−1
0 {h(t)}. (5.1)

s is the complex angular frequency, which can be divided into the real and the imaginary part:

s = α + i 2π f︸︷︷︸
ω

. (5.2)

Inserting this in Equation 5.1 yields

H0(s) =
∞∫

0

h(t)e−αt e−i2π f t dt =
∞∫

−∞
u(t)h(t)e−αt e−i2π f t dt = �

−1{u(t)h(t)e−αt },

(5.3)

where u(t) is the unit step function, illustrated in Figure 5.1:

u(t) =
{

1, t ≥ 0,

0, t < 0.
(5.4)

Figure 5.1: Unit step function u(t).

Fourier Transforms in Spectroscopy. J. Kauppinen, J. Partanen
Copyright © 2001 Wiley-VCH Verlag GmbH

ISBNs: 3-527-40289-6 (Hardcover); 3-527-60029-9 (Electronic)
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We can see that the inverse Laplace transform �
−1
0 of a signal h(t) is the same as the

inverse Fourier transform �−1 of the signal u(t)h(t)e−αt , which starts at t = 0 and where
h(t) has been multiplied by an exponential function. In other words, the inverse Laplace
transform of a signal h(t) is the spectrum of the signal h(t)e−αt , if h(t) = 0 at t < 0.

Laplace transform can be used in several cases where Fourier transform does not, mathe-
matically, exist. In practice, it is not seldom that one encounters a signal which does not have
an inverse Fourier transform which would be an ordinary function. The signal may, however,
have an inverse Laplace transform.

Let us, as an example, examine the constant function h(t) ≡ 1, which is illustrated in
Figure 5.2. The inverse Fourier transform of this constant function is Dirac’s delta function,
�−1{1} = δ( f ), which is not an ordinary function. Similarly, the inverse Fourier transform
of the unit step u(t) is not an ordinary function. However, these functions do have an inverse
Laplace transform

H0(s) = �
−1
0 {1} =

∞∫
0

1e−st dt = 1

s
= �

−1
0 {u(t)} (5.5)

which is unambiguous at Re{s} > 0.

Figure 5.2: Constant function h(t) ≡ 1 and its inverse Fourier transform δ( f ).

If h(t) = 0 at t < 0, then, at points s where α = 0,

�
−1
0 {h(t)} =

∞∫
0

h(t)e−αt e−i2π f t dt =
∞∫

−∞
h(t)e−i2π f t dt = �

−1{h(t)}, (5.6)

that is, the Laplace transform is equal to the Fourier transform.
From Equation 5.3 we can see that the Fourier transform of a Laplace transform is

u(t)h(t)e−αt = �{H0(s)} =
∞∫

−∞
H0(s)e

i2π f t d f. (5.7)

Let us, in this last integration, change variables, and use the variable s = α + i2π f . An
increase of f means an increase of the imaginary part of the new variable s, whereas α remains
constant. Hence, ds = i2π d f . Integration with respect to the new variable is made along a
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line in the direction of the imaginary axis, from α − i∞ to α + i∞. The value of the integral
is independent of the choice of the constant α. We obtain

u(t)h(t) = 1

2π i

α+i∞∫
α−i∞

H0(s)e
st ds = �0{H0(s)}. (5.8)

Since this integration of H(s) gives again the signal h(t) (at t ≥ 0), it is the inverse transform
of �−1

0 , the Laplace transform �0.

Table 5.1 lists the inverse Laplace and inverse Fourier transforms of some signals. In
practice, it is very seldom necessary actually to compute the integral of Equation 5.8 or even of
Equation 5.1. Instead, transforms are found by using transform tables and applying theorems,
the most important of which are included in Table 5.1.

Table 5.1: Inverse Laplace and inverse Fourier transforms of a few signals. In the table, �−1
0 {h(t)} =

H0(s), and �−1{h(t)} = H( f ). In the first row, the term −h(0+) in s H0(s) − h(0+) is omitted, if the
derivative dh/dt is assumed to contain Dirac’s delta peak lim

a→0+
h(a)δ(t) and if h(t) = 0 at t < 0. In

the sixth row, h(t − a) = 0 at t < a.

Inverse Inverse
Signal Laplace transform �

−1
0 Fourier transform �−1

dh(t)/dt s H0(s) − h(0+) 2π f i H( f )

t∫
−∞

h(τ ) dτ H0(s)/s —

th(t) −dH0(s)/ds −dH( f )/(2π id f )

e−at h(t) H0(s + a) (Re{s} > −a) —

h(t/a) (a > 0) aH0(as) aH(a f )

h(t − a) (a > 0) e−as H0(s) e−i2π f a H( f )

e−at 1/(s + a) (Re{s} > −a) —

tn (n ≥ 0) n!/sn+1 —
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An alternative integral which is frequently used to define the inverse Laplace transform is

H∞(s) =
∞∫

−∞
h(t)e−st dt = �

−1
∞ {h(t)} = �

−1{h(t)e−αt }. (5.9)

In this integral, the integration stretches from −∞ to +∞. If this definition is used, Equa-
tion 5.8 becomes

h(t) = 1

2π i

α+i∞∫
α−i∞

H∞(s)est ds = �∞{H∞(s)}. (5.10)

This is the inverse transform of �−1∞ , the Laplace transform �∞.

Example 5.1: (a) Show that the inverse Laplace transform of a periodic function h, whose
period is p, that is, h(t + p) = h(t) at all t , is

�
−1
0 {h(t)} = 1

1 − e−ps

p∫
0

h(t)e−st dt.

(b) Derive the �−1
0 transform of the square wave

h(t) =



V0, 2nT < t ≤ (2n + 1)T (n = 0, 1, 2, . . .),

−V0, (2n + 1)T < t ≤ (2n + 2)T (n = 0, 1, 2, . . .),

0, t < 0.

Solution. (a) Let us define the function h p as

h p =
{

h(t), 0 ≤ t < p,

0 otherwise.

Applying the linearity of the Laplace transforms, as well as the shift theorem in the sixth row
of Table 5.1, we obtain that

�
−1
0 {h(t)} = �

−1
0 {h p(t) + h p(t − p) + h p(t − 2p) + . . .}

= (1 + e−ps + e−2ps + . . .)�−1
0 {h p(t)}

= 1

1 − e−ps

p∫
0

h(t)e−st dt.
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(b) Applying the result of (a),

H0(s) = 1

1 − e−2T s
(

T∫
0

V0e−st dt −
2T∫

T

V0e−st dt)

= V0

1 − e−2T s

1

s
(1 − e−T s + e−2T s − e−T s)

= V0

s

(1 − e−T s)2

(1 − e−T s)(1 + e−T s)

= V0

s

(1 − e−T s)

(1 + e−T s)

= V0

s
tanh(T s/2).

Example 5.2: Applying Laplace transforms, find the solution for{ dy(t)

dt
+ y(t) ≡ 1, t ≥ 0,

y(0) = y0.

Solution. Let us denote Y (s) = �
−1
0 {y(t)}. Taking the inverse Laplace transform of both

sides of dy(t)/dt + y(t) = 1, and applying the derivative theorem in the first row of Table 5.1,
we obtain

sY (s) − y(0+) + Y (s) = 1

s
.

Solving for Y (s) gives

Y (s) =
1
s + y(0+)

s + 1
= 1 + sy(0+)

s(s + 1)

= 1

s
+ y(0+) − 1

s + 1
.

�0 transform (that is, reading Table 5.1 from right to left) gives

y(t) = 1 + (y0 − 1)e−t .
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5.2 Transfer function of a linear system

A linear system is a system where the input signal and the output signal are related by a
linear differential equation with constant coefficients. Let us denote hin(t) the input signal
and hout(t) the output signal, as illustrated in Figure 5.3. The system can be described by an
equation [

An
dn

dtn
+ · · · + A2

d2

dt2
+ A1

d

dt
+ A0

]
hout(t)

=
[

Bm
dm

dtm
+ · · · + B2

d2

dt2
+ B1

d

dt
+ B0

]
hin(t). (5.11)

The derivative theorem of the Laplace transform �−1∞ states that

�
−1
∞

{
dkh(t)

d tk

}
= sk

�
−1
∞ {h(t)}. (5.12)

Equation 5.11 can be solved in a very practical way by taking the inverse Laplace transform
�

−1∞ of both sides of the equation, and applying the derivative theorem. We obtain(
Ansn + · · · + A2s2 + A1s + A0

)
�

−1
∞ {hout(t)}

=
(

Bmsm + · · · + B2s2 + B1s + B0

)
�

−1
∞ {hin(t)}. (5.13)

The transfer function of a system can be defined as the relation of the inverse Laplace
transform of the output signal to the inverse Laplace transform of the input signal. Applying
Equation 5.13, we obtain that the transfer function of a linear system is

G(s) = Hout∞ (s)

H in∞(s)
= �

−1∞ {hout(t)}
�

−1∞ {hin(t)}
(5.13)=

m∑
j=0

B j s
j

n∑
k=0

Aksk

. (5.14)

Figure 5.3: Schematic illustration of a linear system. hin(t) is the input signal and hout(t) is the output
signal.
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At the points where the real part of s is zero, that is, α = 0 and s = i2π f , the Laplace
transform �−1∞ can be replaced by the Fourier transform �−1, and the transfer function is

G( f ) = Hout( f )

Hin( f )
= �−1{hout(t)}
�−1{hin(t)} =

m∑
j=0

B j (i2π f ) j

n∑
k=0

Ak(i2π f )k

. (5.15)

The impulse response of a system is the Laplace transform of the transfer function:

g(t) = �∞{G(s)} = 1

2π i

α+i∞∫
α−i∞

G(s)est ds. (5.16)

At points where α = 0 and s = 2π i f

g(t) = �{G( f )} =
∞∫

−∞
G( f )ei2π f t d f. (5.17)

The definition of the transfer function, Equation 5.14, yields

Hout
∞ (s) = G(s)H in

∞(s). (5.18)

Consequently, applying the convolution theorem of the Laplace transform, we obtain that the
output signal is the convolution of the input signal and the impulse response of the system:

hout(t) = g(t) ∗ hin(t). (5.19)

If the input signal is Dirac’s delta peak or impulse, hin(t) = δ(t), then the output signal is
the impulse response of the system,

hout(t) = g(t) ∗ δ(t) = g(t). (5.20)

This is illustrated in Figure 5.4. In principle, using Dirac’s delta peak as input would give a
method to determine the impulse response. However, for example in electronics, it may be
very difficult to produce a sufficiently narrow peak which would work as an infinitely high
and narrow Dirac’s delta peak.

Unlike Dirac’s delta peak, a unit step function u(t) is easy to produce in practice. If
hin(t) = u(t), then hout(t) = u(t) ∗ g(t). This output signal of a unit step function is called
the step response. Let us examine its derivative (for differentiation of a step, see Problem 1.9
or 12.7):

dhout(t)

dt
= d

dt
[u(t) ∗ g(t)] = du(t)

dt
∗ g(t) = δ(t) ∗ g(t) = g(t), (5.21)
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Figure 5.4: If the input signal of a linear system is a delta peak, hin(t) = δ(t), then the output signal is
the impulse response of the system, hout(t) = g(t).

because, for convolution,

d

dt
( f ∗ g) = d f

dt
∗ g = f ∗ dg

dt
. (5.22)

Consequently, the impulse response of the system can be obtained by using a unit step func-
tion, hin(t) = u(t), as the input signal, and calculating the derivative of the output signal,

g(t) = dhout(t)

dt
. (5.23)

Figure 5.5 shows the situation schematically.

Figure 5.5: If the input signal of a linear system is a unit step function, hin(t) = u(t), then the impulse
response of the system is the derivative of the output signal, dhout(t)/dt = g(t).

Example 5.3: Find the impulse response and the transfer function of the integrating RC circuit
of Figure 5.6.

Figure 5.6: Schematic illustration of an integrating RC circuit. The input signal is hin(t) and the output
signal hout(t). The spectrum of the input is Hin( f ) = H in∞(s), where s = i2π f (α = 0). The impedance
of capacitor C is ZC = 1/(i2π f C) = 1/(sC).
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Solution. If the input signal voltage of the integrating RC circuit is a unit step function, then
the output signal voltage, the step response, is

hout(t) = 1 − e−t/(RC) (t ≥ 0). (5.24)

These input and output functions are illustrated in Figure 5.7.
The impulse response of the circuit can be calculated from the step response:

g(t) = dhout(t)

dt
= d

[
1 − e−t/(RC)

]
dt

= 1

RC
e−t/(RC). (5.25)

The transfer function of the circuit is

G(s) = �
−1
∞ {g(t)} =

∞∫
0

1

RC
e−t/(RC)e−st dt

=
∞/

0

1

RC

−1(
1

RC + s
) e

−t
(

1
RC +s

)
= 1

1 + RCs
, (5.26)

in accordance with Table 5.1. Above we have assumed that g(t) = 0 at t < 0, and hence
�

−1
0 {g(t)} = �

−1∞ {g(t)}. The transfer function has the amplitude

|G(s)| =
√

G∗(s)G(s) = 1√
1 + (2π f RC)2

(5.27)

Figure 5.7: If the input signal of an integrating RC circuit is the unit step function, hin(t) = u(t) (upper
curve), then the output signal is hout(t) = 1 − e−t/(RC) (t ≥ 0) (lower curve).
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and the phase

φ(s) = arctan

{
Im G(s)

Re G(s)

}
= arctan(−RCs). (5.28)

The transfer function of an electric circuit can also be found more directly. Let us examine
the circuit in Figure 5.8, which consists of two impedances Z1 and Z2. If the input signal

voltage hin(t) is a sinusoidal wave, of a frequency f = ω

2π
= s

i2π
, then, according to

traditional electronics, the output signal voltage is also sinusoidal and is given by

hout(t) = Z2

Z1 + Z2
hin(t). (5.29)

Taking the Laplace transform �−1∞ of both sides of this equation, and remembering that Z1
and Z2 are constants, independent of time, we obtain that

Hout
∞ (s) = Z2

Z1 + Z2
H in

∞(s). (5.30)

Now, since hin(t) and hout(t) are both sinusoids with the same frequency f , H in∞(s) and
Hout∞ (s) are both Dirac’s delta peaks at the same point s = i2π f . On the other hand, Z1
and Z2 both depend on angular frequency ω = 2π f and thereby on the point s where H in∞(s)
and Hout∞ (s) are nonzero. Therefore we may write

Hout
∞ (s) = Z2(s)

Z1(s) + Z2(s)
H in

∞(s). (5.31)

Since this holds for every s separately, it is also valid for a general input, wherefrom we obtain

G(s) = Hout∞ (s)

H in∞(s)
= Z2(s)

Z1(s) + Z2(s)
. (5.32)

Let us calculate the transfer function of the integrating circuit by applying Equation 5.32.
In this case, Z1 = R and Z2 = 1/(i2π f C) = 1/(sC). Consequently,

G(s) =
1

sC

R + 1
sC

= 1

1 + s RC
. (5.33)

This is, indeed, the same result as in Equation 5.26.

Figure 5.8: Schematic illustration of a simple electric circuit, consisting of two impedances Z1 and Z2.
The input signal is hin(t) and the output signal hout(t).
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Example 5.4: Find the impulse response and the transfer function of the differentiating RC
circuit of Figure 5.9.

Figure 5.9: Schematic illustration of a differentiating RC circuit. The input signal is hin(t) and the
output signal hout(t).

Solution. If the input signal of the differentiating RC circuit is a unit step function hin(t) =
u(t), then the circuit gives the output signal

hout = e−t/(RC), (t ≥ 0), (5.34)

shown in Figure 5.10.
The impulse response of the circuit is (g(t) = 0 at t < 0)

g(t) = dhout(t)

dt
= − 1

RC
e−t/(RC) + δ(t), t ≥ 0. (5.35)

The transfer function of the circuit is

G(s) = �
−1
∞ {g(t)} =

∞∫
0

− 1

RC
e−t/(RC)e−st dt +

∞∫
−∞

δ(t)e−st dt

= − 1

1 + RCs
+ 1 = RCs

1 + RCs
. (5.36)

Figure 5.10: Output signal of a differentiating RC circuit is hout(t) = e−t/(RC) (at t ≥ 0), if the input
signal is the unit step function.
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We can check this result by applying Equation 5.32. In this case,

G(s) = R

R + 1
sC

= RCs

1 + RCs
. (5.37)

Example 5.5: Find the impulse response and the transfer function of the RCL circuit of
Figure 5.11.

Figure 5.11: Schematic illustration of an RCL circuit. The input signal is hin(t) and the output signal
hout(t).

Solution. Applying Equation 5.32, we obtain that the transfer function of the RCL circuit is

G(s) =
1

sC

sL + 1
sC + R

= 1

s2LC + s RC + 1
=

1
LC

s2 + s R
L + 1

LC

. (5.38)

We divide this expression into partial fractions:

G(s) =
1

LC

s2 + s R
L + 1

LC

= A

s + a
− A

s + b
, (5.39)

where −a and −b are the roots of the denominator, that is,


a = + R

2L
+ 1

2

√
R2

L2
− 4

LC
,

b = + R

2L
− 1

2

√
R2

L2
− 4

LC
,

(5.40)

and A(s + b) − A(s + a) = 1/(LC), or

A = 1

LC(b − a)
. (5.41)

Applying the rule in the seventh row of Table 5.1, we can calculate the impulse response of
the circuit:

g(t) = �∞{G(s)} = �∞
{

A

s + a

}
− �∞

{
A

s + b

}
�0=�∞= Ae−at − Ae−bt = 1

LC(b − a)

(
e−at − e−bt

)
. (5.42)
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5.3 z transform

z transform is another integral transform which is in general use in electronics and signal
processing. The z transform is the same as the Laplace transform �

−1∞ of a discrete signal.
Let us examine the Laplace transform

H∞(s) =
∞∫

−∞
h(t)e−st dt = �

−1
∞ {h(t)} (5.43)

of a signal h(t), which is discrete, but infinitely long (not truncated). The Laplace transform
of the discrete signal is

H�t
∞ (s) =

∞∑
j=−∞

�t h( j �t)e−s j �t =
∞∑

j=−∞
�t h( j �t)z− j , (5.44)

where z = es �t , and s = α + i2π f . The variable z can also be written as

z = eα �t︸︷︷︸
= r

ei2π f �t = rei2π f �t . (5.45)

If |z| = 1, that is, r = 1, or α = 0, then the z transform is the same as the Fourier
transform of a discrete signal.

If the data are abbreviated as h j = �t h( j �t), then the z transform can be written as

H�t
∞ (z) =

∞∑
j=−∞

h j z
− j . (5.46)

A one-sided z transform is also in frequent use. The one-sided z transform is the �−1
0

transform of a discrete signal,

H�t
0 (z) =

∞∑
j=0

h j z
− j . (5.47)

This is the same as the two-sided transform in Equation 5.46, if the signal h(t) = 0 at t < 0.
Generally, it is possible to apply a continuous transform (or integration) to a discrete

signal, if the signal is written as

h(t) = h0δ(t) + h1δ(t − �t) + · · · + hkδ(t − k �t) + · · · . (5.48)

If we take the continuous Laplace transform �
−1∞ of a term in the sum of Equation 5.48, we

obtain

�
−1
∞ {hkδ(t − k �t)} =

∞∫
−∞

hkδ(t − k �t)e−st dt = hke−s �t k = hk z−k . (5.49)
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The shift theorem of the Laplace transform states that if a signal is shifted by �t , then the
spectrum is multiplied by a phase factor e−s �t = z−k . This can be seen in Equation 5.49.

Example 5.6: What is the z transform of the vector h j = 1 for all j ≥ 0, that is, the vector
(1, 1, 1, . . .)?

Solution. Applying Equation 5.46, the z transform is

H�t
∞ (z) = 1 + z−1 + z−2 + · · · = 1/(1 − z−1). (5.50)

Example 5.7: What is the z transform of the vector h0 = 0 for j = 0 and h j = 1 for all
j ≥ 1, that is, the vector (0, 1, 1, 1, . . .)?

Solution. Applying the shift theorem, the z transform is

H�t
∞ (z) = z−1/(1 − z−1). (5.51)

Problems

1. In the theory of (one-sided) Laplace transforms, functions are assumed to be zero at
negative values of t . Hence the definition of convolution achieves the form

h(t) ∗ g(t) =
t∫

0

h(u)g(t − u) du.

Let us denote �−1
0 {h(t)} = H0(s) and �−1

0 {g(t)} = G0(s). Prove the convolution
theorem of Laplace transforms

�
−1
0 {h ∗ g} = H0G0.

2. Let us assume that a function h(t) is continuous and differentiable in the interval from
0 to ∞, and it has no step, even in the origin. Let us also assume that �−1

0 {h(t)} exists.
Show that in this case

�
−1
0 {h(1)(t)} = s�−1

0 {h(t)} − h(0),

where h(1)(t) = dh(t)/dt . Also show that if the function h(t) has in the origin a step
from 0 to h(0+) = lim

a→0+
h(a) (in which case the derivative of the function is in the origin

h(1)(0) = h(0+)δ(t)), then the rule is reformulated as

�
−1
0 {h(1)(t)} = s�−1

0 {h(t)}.

(The effect of the term h(0+) is then included in h(1).)
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3. (a) Compute �−1
0 {δ(t − t0)}, where t0 ≥ 0.

(b) Compute �−1
0

{
�

−1
0 {δ(t)}

}
.

(c) Which function has the function
bs

s + a
as its �−1

0 transform?

4. Let us denote �−1∞ {h(t)} the two-sided inverse Laplace transform of a function h(t), i.e.,

�
−1
∞ {h(t)} =

∞∫
−∞

h(t)e−st dt.

Compute the two-sided inverse Laplace transform of the function h(t) = e−a|t |, where
a is a real constant. At which values of s and a does the transform exist (as an ordinary
function)?

5. (a) Compute �−1
0 {cos(at)}, where a is a real constant.

(b) Applying the result of (a), and the rule �−1
0 {h(1)(t)} = s H0(s) − h(0+), compute

�
−1
0 {sin(at)}.

6. Applying the Laplace transform �
−1
0 , solve the differential equation

h(2)(t) + h(t) = t, h(0) = 0, h(1)(0) = 2,

where h(1)(t) = dh(t)/dt , and h(2)(t) = d2h(t)/dt2.

Hint: �−1
0 {sin(at)} = a

s2 + a2
.

7. Applying the Laplace transforms, solve the pair of differential equations{
f (1)(t) + 2 f (t) = 2g(t),

g(1)(t) = f (1)(t) − 2 f (t)
at initial values

{
f (0) = 0,

g(0) = 1.

8. A vertical string (string constant k) is fixed from its upper end. A mass m is attached
to the lower end. In addition to the string force, the string is affected by a periodic
vertical force F0 sin(pt). Let us denote y the downward deviation of the string from the
equilibrium position. The equation of motion is then

m
d2 y

dt2
= F0 sin(pt) − ky, or

d2 y

dt2
= K sin(pt) − ω2

0 y,

where K = F0/m and ω0 = √
k/m. Applying the Laplace transforms, solve y(t)

with the initial values y(0) = 0 and y(1)(0) = 0. How does the solution behave in the
resonance p2 = ω2

0?

9. The impulse response of an electric circuit is a boxcar-shaped signal of height 1/T and
of duration from 0 to T . What is the output of the circuit, if the input signal is a boxcar-
shaped voltage pulse of height U and of duration 2T ?
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10. The output and the input of a linear system are connected by the differential equation(
4 − d2

dt2

)
hout(t) ≡ d

dt
hin(t).

Find the impulse response g(t) of the system.

Hint: �−1
∞

{
e−a|t |

}
= 1

a − s
+ 1

a + s
(two-sided Laplace transform).

11. What is the output of a linear circuit, if

hin(t) =
{

Ae−β0t , t ≥ 0,

0, t < 0,
and G(s) = 1

s/β1 + 1
?

12. Find the impulse response of the following RL circuit,

(a) by formulating the transfer function G(s) and applying Laplace transforms, and

(b) without Laplace transforms, by first solving the current i from the differential equa-
tion Ldi/dt + Ri = hin, where hin is the step function u.

13. The impulse response of a linear system is the signal e−Ct , which starts at t = 0 and
damps out exponentially. Two such systems are combined in a series, so that the output
of the first system is the input of the second system. What is the impulse response of the
combined system?

14. The z transforms of the data sequences {h j } and {g j } are H�t∞ (z) and G�t∞ (z), respec-

tively. Let us define the data sequence {e j } as e j =
∞∑

k=−∞
hk g j−k . Show that the

z transform of {e j } is E�t∞ (z) = H�t∞ (z)G�t∞ (z). (This result is the convolution theorem
of the z transforms.)



6 Fourier transform spectroscopy (FTS)

A. A. Michelson invented in the 1880s a simple interferometer, which basically consists of a
beamsplitter and two plane mirrors. Initially, the interferometer was used to study the speed
of light and to fix the standard meter with the wavelength of a spectral line. The use of
the Michelson interferometer as a spectrometer was started more than half a century later.
In 1949, astrophysicist Peter Fellgett applied the interferometer to measure the light from
celestial bodies, and computed the first Fourier transform spectrum.

6.1 Interference of light

A monochromatic electromagnetic wave with an electric field strength E is given by

E = Aei(k·r−ωt), (6.1)

where A is the amplitude of the wave, k is the wave vector, r is the position vector, ω is the
angular frequency, and t is time. In this expression,

k = |k| = 2π

λ
= 2πν, (6.2)

where λ is the wavelength of the electromagnetic wave. Both k and ν are called the wave-
number. It is conventional to express the wavenumber in the unit 1/cm instead of 1/m.

Usually, we are not able to measure E as a function of time, because the angular fre-
quency ω is too high. We measure the intensity, that is, the power of the electromagnetic wave
per area, instead. The intensity I is proportional to the square of the amplitude:

I ∝ A2. (6.3)

Let us examine the interference of two electromagnetic waves E1 = A1ei(kx x−ωt) and
E2 = A2ei(kx x−ωt+δ), propagating in the same direction x . The waves, their amplitudes, and
the resultant amplitude are illustrated in Figure 6.1. The phase difference of the two waves
is δ. The square of the amplitude of the resulting wave is

A2 = A2
1 + A2

2 + 2A1 A2 cos δ. (6.4)

If I1 and I2 are the intensities of the two interfering waves, the intensity of the interfered wave
is

I = I1 + I2 + 2
√

I1 I2 cos δ . (6.5)

Fourier Transforms in Spectroscopy. J. Kauppinen, J. Partanen
Copyright © 2001 Wiley-VCH Verlag GmbH
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If the two interfering waves have equal intensity, that is, I1 = I2 = I0, then the intensity of
the resulting wave is simply

I = 2I0(1 + cos δ). (6.6)

Figure 6.1: Interference of the two waves E1 = A1ei(kx x−ωt) and E2 = A2ei(kx x−ωt+δ). A is the
resultant amplitude.

6.2 Michelson interferometer

The Michelson interferometer is very simple, but its principles of function can be applied to
other interferometers used in Fourier transform spectroscopy, FTS. The basic optical layout
of the Michelson interferometer is illustrated in Figure 6.2. The incident beam is divided by
a beamsplitter B into two parts: the reflected beam travels to a fixed mirror M1 and back, and
the transmitted beam travels to a moving mirror M2 and back. When the two beams return to
the beamsplitter they interfere.

Effectively, the Michelson interferometer produces two coherent images S′ and S′′ of the
real source S0, as shown in Figure 6.3. The beamsplitter forms an image S′

0 of the source S0,
and an image M′

2 of the moving mirror M2. S′ is the image of S′
0, formed by the mirror M1,

and S′′ is the image of S′
0, formed by the image mirror M′

2. Let us denote d the distance
between the mirror M1 and the image mirror M′

2. Then the distance of the two images S′
and S′′ is 2d.
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Figure 6.2: Optical arrangement of the Michelson interferometer. M1 and M2 are a fixed and a moving
mirror, respectively. B is the half-transparent surface of a beamsplitter J, and K is a compensator plate.
The beamsplitter and the compensator plate have the same thickness l and the same refractive index n(λ).
M′

2 is the image of M2, formed by the surface B. The distance of M1 and M′
2 is d . The ray leaves the

interferometer along the path e, which is the optical axis.

Figure 6.3: The interference pattern formed by a Michelson interferometer. The beamsplitting surface B
forms the image M′

2 of the moving mirror M2, and the image S′
0 of the light source S0. S′ is the image

of S′
0, formed by the fixed mirror M1, and S′′ is the image of S′

0, formed by M′
2. The path difference of

the two rays, travelling at the angle θ , is 2d cos θ .
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Figure 6.3 also shows the rays travelling at the angle θ with respect to the optical axis
of the interferometer. The optical path difference of the rays coming from the two coherent
images is x = 2nd cos θ , where n is the refractive index of the medium. If the beamsplitter is
perfect, it divides the beam into two parts with equal intensity I0. The output intensity of the
interferometer is then, according to Equation 6.6,

I = 2I0(1 + cos δ), (6.7)

where the phase difference of the two rays is now

δ = 2πx

λ
= 2π

λ
2nd cos θ. (6.8)

An interference fringe pattern is obtained. Intensity maxima are obtained with the condition

δ = l2π, l = 0, ±1, ±2, ±3, . . . ,

2nd cos θ = lλ, l = 0, ±1, ±2, ±3, . . .
(6.9)

If θ = 0 (the rays propagate in the direction of the optical axis), n = 1 (the medium is
vacuum), and S0 is a monochromatic point source, then the optical path difference of the two
rays is x = 2d, and the intensity is

F = 2I0


1 + cos(2πν 2d︸︷︷︸

x

)


 . (6.10)

This intensity in the optical axis of the interferometer is shown in Figure 6.4 as a function
of the distance d. Maxima are obtained in the intervals λ/2 of the distance d, that is, in the
intervals λ of the optical path difference x .

Figure 6.4: Output intensity F in the optical axis of a Michelson interferometer as a function of the
distance d .
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Let us now assume that the spectrum of the light source S0 is continuous and consists
of a wide band of wavenumbers, so that the spectrum of the beams in both branches of the
interferometer is E(ν), shown in Figure 6.5. We shall assume that the source is still a point
source. At a given optical path difference x , the interference signal from the infinitesimal
spectral element between ν and ν + dν is, according to Equation 6.10,

dF(x, ν) = 2E(ν) [1 + cos(2πνx)] dν. (6.11)

Consequently, the total signal from the whole spectral band is

F(x) = 2

∞∫
0

E(ν) [1 + cos(2πνx)] dν. (6.12)

F(x) is called an interference record. An interference record is the total interference signal of
the whole spectral band, measured as the function of the optical path difference x . A typical
interference record is shown in Figure 6.6.

If we subtract the constant term

1

2
F(0) = 2

∞∫
0

E(ν) dν (6.13)

from the interference record F(x), we obtain

I (x) = F(x) − 1

2
F(0) = 2

∞∫
0

E(ν) cos(2πνx) dν. (6.14)

I (x) is called an interferogram.

Figure 6.5: A wide-band continuous spectrum E(ν) and an infinitesimal monochromatic section of the
width dν.
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Figure 6.6: An interference record F(x).

If we define E(−ν) = E(ν), the computation is simplified, and we obtain

I (x) =
∞∫

−∞
E(ν) cos(2πνx) dν =

∞∫
−∞

E(ν)ei2πνx dν = �{E(ν)}, (6.15)

where � is the Fourier transform. Hence, I (x) and E(ν) form a Fourier transform pair, and
they can be written as

I (x) =
∞∫

−∞
E(ν)ei2πνx dν = �{E(ν)},

E(ν) =
∞∫

−∞
I (x)e−i2πνx dx = �

−1{I (x)}.
(6.16)

By denoting E(ν) the spectrum in one branch of the interferometer, in which case the whole
spectrum of the source is 2E(ν), we avoided extra coefficients in front of the integrals. We
can also see that

�{�−1{I (x)}} = �
−1{�{I (x)}} = I (x). (6.17)

Since the signal of the interferometer as the function of the optical path difference and the
spectrum as a function of wavenumber form a Fourier transform pair, we can apply all the
properties of Fourier transforms in the calculation of the spectrum. We have all the theorems
of Chapter 2 at our disposal, if we merely replace t by the distance x [cm] and f by the
wavenumber ν

[
cm−1

]
.
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In FTS, the output of a measurement is generally a signal in x-domain, and the most
interesting information is obtained from the spectrum in ν-domain, which is calculated from
the signal by inverse Fourier transform.

Example 6.1: The data collection system of a Fourier transform spectrometer makes a phase
error of 5 µm. This means that every measured optical path difference value is 5 µm too
large. How does this distort the spectral lines at wavenumbers 1 000 cm−1, 1 500 cm−1

and 2 000 cm−1?

Solution. The spectrum is E(ν) = �
−1{I (x)}. Let us denote the measured optical path

difference x . The true optical path difference is x − �x . The spectrum with the phase error
is, applying the shift theorem,

E ′(ν) = �
−1{I ′(x)} = �

−1{I (x − �x)} = e−i2π�xν E(ν).

At ν = 1 000 cm−1: e−i2π�xν = e−iπ = −1.

At ν = 1 500 cm−1: e−i2π�xν = e−i3π/2 = i.
At ν = 2 000 cm−1: e−i2π�xν = e−i2π = 1.

6.3 Sampling and truncation in FTS

In Chapter 3 we discussed the general theory of discrete Fourier transforms. In the following,
we shall examine the same phenomena in the case of FTS. This section is a good example how
well the general theory fits a true application.

In practice, we cannot compute the spectrum by Equation 6.16, because the interferogram
I (x) is sampled only at a set of discrete points with a sampling interval �x :

x j = j �x, j = −N , −N + 1, −N + 2, . . . , −1, 0, 1, . . . , N − 1. (6.18)

The data are collected only in the finite region from x = −L to x = L , where L = N �x .
We shall denote the interferogram samples by I (x j ) = I j . We shall have to apply the

discrete Fourier spectrum, where the integral is replaced by a sum, that is,

∞∫
−∞

dx → �x
N−1∑
−N

.

The spectrum is then given by

E�x
L (ν) = �x

N−1∑
j=−N

I j e
−i2πν j �x . (6.19)

A truncated, continuous interferogram IL(x) can be written as

IL(x) = �2L(x)I (x), (6.20)

where �2L is the boxcar function

�2L(x) =
{

1, |x | ≤ L ,

0, |x | > L .
(6.21)
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The spectrum computed from the truncated, continuous interferogram is

EL(ν) = �
−1{�2L (x)I (x)} = �

−1{�2L (x)} ∗ �−1{I (x)}

= WL (ν) ∗ E(ν) =
∞∫

−∞
WL (u)E(ν − u) du, (6.22)

where

WL (ν) = �
−1{�2L (x)} =

∞∫
−∞

�2L(x)e−i2πνx dx = 2L sinc(2πνL). (6.23)

The spectrum computed from a sampled, infinitely long (not truncated) interferogram is

E�x (ν) = �x
∞∑

j=−∞
I j e

−i2πν j �x . (6.24)

Remembering the properties of the discrete Fourier transform, we can see that the discrete
sampling of an interferogram with the sampling interval �x gives a periodic spectrum E�x (ν)

with the period 1/(�x), that is, E�x
(
ν − k

�x

) = E�x (ν) with all integers k. The spectrum
computed from the sampled, not truncated interferogram is

E�x (ν) =
∞∑

k=−∞
E

(
ν − k

�x

)
. (6.25)

Combining the effects of truncation and discrete sampling, we obtain the spectrum E�x
L (ν)

of a sampled, truncated interferogram

E�x
L (ν) =

∞∑
k=−∞

EL

(
ν − k

�x

)
=

∞∑
k=−∞

δ

(
ν − k

�x

)
∗ EL(ν)

(6.22)=
∞∑

k=−∞
δ

(
ν − k

�x

)
∗ 2L sinc(2πνL)︸ ︷︷ ︸

WL (ν)

∗E(ν)

=
{ ∞∑

k=−∞
2L sinc

[
2π

(
ν − k

�x

)
L

]}
∗ E(ν)

= W�x
L (ν) ∗ E(ν), (6.26)

where

W�x
L (ν) =

∞∑
k=−∞

2L sinc

[
2π

(
ν − k

�x

)
L

]
(6.27)

is the instrumental profile due to the truncation of the interferogram and the discrete sampling.
It can also be called the instrumental function of a Fourier transform spectrometer.



6.3 Sampling and truncation in FTS 85

Let us examine the monochromatic spectrum consisting of spectral lines at the wave-
numbers +ν0 and −ν0. The spectrum is

E(ν) = δ(ν − ν0) + δ(ν + ν0). (6.28)

The corresponding signal is the interferogram

I (x) = �{E(ν)} = ei2πν0x + e−i2πν0x = 2 cos(2πν0x). (6.29)

The monochromatic spectrum and the signal, which is a cosine wave, are shown in Figure 6.7.
If this signal is recorded only from x = −L to x = L , that is, the interferogram is truncated,
then the computed spectrum becomes

EL(ν) = WL (ν) ∗ [δ(ν − ν0) + δ(ν + ν0)]

= WL (ν − ν0) + WL (ν + ν0)

= 2L sinc [2π(ν − ν0)L] + 2L sinc [2π(ν + ν0)L] . (6.30)

Thus, because of truncation, the computed spectrum consists of two sinc functions instead of
two sharp lines, as shown in Figure 6.8.

Figure 6.7: Monochromatic spectrum E(ν) = δ(ν − ν0) + δ(ν + ν0), and its Fourier transform, the
signal I (x) = 2 cos(2πν0x).
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Figure 6.8: A spectrum EL (ν) which consists of sinc functions instead of monochromatic lines, because
the signal has been recorded only in the finite region from −L to L . The theoretical resolution is
approximately 1.207/(2L).

The theoretical resolution of a spectrum, if L is the maximum optical path difference of
the interferometer, is the full width at half maximum, FWHM, of the sinc function, which is

δν ≈ 1.207/(2L). (6.31)

If the truncated cosine wave is measured only at discrete points, then the computed spec-
trum becomes

E�x
L (ν) = W�x

L (ν) ∗ [δ(ν + ν0) + δ(ν − ν0)] = W�x
L (ν − ν0) + W�x

L (ν + ν0)

=
∞∑

k=−∞
2L sinc

[
2π

(
ν + ν0 − k

�x

)
L

]

+
∞∑

l=−∞
2L sinc

[
2π

(
ν − ν0 − l

�x

)
L

]
. (6.32)

This spectrum is shown in Figure 6.9. It consists of two sets of periodic series of sinc functions∑
k

and
∑
l

with the period 1/(�x).

A true spectrum E(ν) may have, instead of monochromatic lines, a wide spectral band in
some wavenumber region (−νmax, νmax), as shown in Figure 6.10. Let us, in addition, assume
that the length of the sampling region is large: 1/L � 2νmax. In this case, the sinc-widening
(see Equation 6.31) of a wide-band spectrum due to signal truncation is negligible, and

WL (ν) ∗ E(ν) = 2L sinc(2πνL) ∗ E(ν) ≈ E(ν).
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Figure 6.9: The spectrum E�x
L (ν), which is obtained, if the true spectrum is the monochromatic

spectrum δ(ν + ν0) + δ(ν − ν0), but the signal has been truncated and sampled at discrete

points. The spectrum consists of the two series
∞∑

k=−∞
2L sinc

[
2π

(
ν + ν0 − k

�x

)
L

]
and

∞∑
l=−∞

2L sinc

[
2π

(
ν − ν0 − l

�x

)
L

]
.

Figure 6.10: Spectrum E(ν) which has a wide band in the wavenumber region (−νmax, νmax).

If the sampling period is short, then the spectral band is not wider than the period of the
computed spectrum caused by discrete sampling, that is, 2νmax ≤ 1/(�x). In this case, the
computed spectrum E�x

L (ν) consists of periodically recurring functions

WL (ν) ∗ E(ν) = 2L sinc(2πνL) ∗ E(ν),

as shown in Figure 6.11.
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Figure 6.11: The spectrum E�x
L (ν), if 1/(�x) > 2νmax. The spectrum in the region (−νmax, νmax) is

WL (ν) ∗ E(ν) = 2L sinc(2πνL) ∗ E(ν) ≈ E(ν), if 1/L � νmax.

The critical sampling interval of an interferometric signal is the inverse of the Nyquist
frequency:

(�x)Nyquist = 1

2νmax
, (6.33)

where νmax is the maximum wavenumber of the spectral band. If this optimal sampling
interval is used, then the computed spectrum E�x

L (ν) contains no free regions, as demonstrated
in Figure 6.12. If the sampling interval is larger, that is, �x > 1/(2νmax), then the spectrum
E�x

L (ν) is distorted due to aliasing, because the different spectral orders (different l and k)
overlap (see Figure 3.8).

Figure 6.12: The spectrum E�x
L (ν), when the critical sampling interval �x = (�x)Nyquist =

1/(2νmax) is used.
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6.4 Collimated beam and extended light source

In a practical interferometer, light coming from the source is collected by a collimator, which
may be, for example, a convex lens, as shown in Figure 6.13. In this way, a larger proportion
of the light energy can be utilized. In the figure, the collimator lens L1 turns the spherical wave
coming from the source into a plane wave. In front of the detector there is another lens L2
which focuses the plane wave to the detector. The interferometer in Figure 6.13 with two
convex lenses is called the Twyman–Green interferometer.

Figure 6.13: The optical layout of the Twyman–Green interferometer. S0 is a light source, D is a
detector, B is a beam splitter, M1 is a fixed mirror, and M2 is a moving mirror. L1 and L2 are convex
lenses.

Instead of a lens, the collimator may be a mirror. Figure 6.14 shows an interferometer
whose collimator is a parabolic mirror which is off-axis, that is, the mirror is out of the center
point of the paraboloid. The mirror focusing the beam to the detector is another off-axis
parabolic mirror.
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Figure 6.14: An interferometer with off-axis parabolic mirrors. S0 is a light source, D is a detector, B is
a beam splitter, M1 is a fixed mirror, M2 is a moving mirror, and M3 and M4 are fixed off-axis parabolic
mirrors.

In practice, the light source of an interferometer is not a point source but an extended
source, which has a finite area a, as shown in Figure 6.15. If A denotes the area of the
collimator mirror or lens, f the focal length of the collimator, �0 = A/ f 2 the solid angle of
the collimator as seen from the source, and � = a/ f 2 the solid angle of the source as seen
from the collimator, then the intensity of the signal entering the interferometer is proportional
to

a A/ f 2 = �A = a�0. (6.34)
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Figure 6.15: Extended radiation source S0 at the focal point of the collimator lens L with the focal
length f . The area of the source is a, and the area of the lens is A. �0 is the solid angle of the lens, and
� = πθ2 is the solid angle of the source.

If the optical path difference of the two rays of the interferometer in the optical axis is
x = 2d, then the optical path difference of the rays travelling in the direction α with respect
to the optical axis is (see Examples 6.2 and 6.3)

x︸︷︷︸
2d

cos α ≈ x

(
1 − �′

2π

)
, (6.35)

where �′ = πα2. The direction α of the ray coming from the source may vary from 0 to the
maximum θ which fulfills the condition � = πθ2. As the direction α varies 0 → θ , then
the solid angle �′ varies 0 → �. The total interferogram is obtained by integrating over the
source (see Example 6.4):

I�(x) =
�∫

0

I

[
x

(
1 − �′

2π

)]
d�′ = �

∞∫
−∞

E(ν) sinc

(
νx�

2

)
e

i2πνx
(

1− �
4π

)
dν. (6.36)

If we compare this interferogram to the interferogram of a point source in Equation 6.16,

I (x) =
∞∫

−∞
E(ν)ei2πνx dν, (6.37)

we can see that one effect caused by the extended source is a shift of the measured wave-
number. The true wavenumber can be obtained from the measured wavenumber:

νtrue = νmeasured(
1 − �

4π

) . (6.38)
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Let us examine how a monochromatic spectrum behaves if the source is extended. If the
true spectrum is E(ν) = δ(ν − ν0) + δ(ν + ν0), then Equation 6.36 gives

I�(x) = �

{
sinc

(
ν0x�

2

)
e

i2πν0x
(

1− �
4π

)
+ sinc

(
ν0x�

2

)
e
−i2πν0x

(
1− �

4π

)}
. (6.39)

Remembering that

�
−1{2L sinc(2πνL)} =

{
1, |x | ≤ L ,

0, |x | > L ,

the spectrum computed from the interferogram can be written as

E�(ν) = �
−1{I�(x)}

= ��(ν, ν0) ∗
{
δ

[
ν + ν0

(
1 − �

4π

)]
+ δ

[
ν − ν0

(
1 − �

4π

)]}
, (6.40)

where the boxcar function

��(ν, ν0) = �
−1{� sinc(ν0x�/2)} =




2π

ν0
, |ν| ≤ ν0�

4π
,

0, |ν| >
ν0�

4π
.

This spectrum is shown in Figure 6.16. Due to the finite size of the source, the monochromatic
peaks are seen as boxes. The width of the boxes is ν0�/(2π), and their height is 2π/ν0.

We can see that another effect caused by the extended source, besides the shift of the
measured wavenumber, is the broadening of the spectral lines. This is called the aperture
broadening.

Figure 6.16: The observed spectrum, if the true spectrum is monochromatic E(ν) = δ(ν − ν0) +
δ(ν + ν0), and the solid angle of the circular source is �. Due to the extended size of the source,
monochromatic peaks are seen as boxes.
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Further, we can write the monochromatic spectrum in the case of an extended source as

E�(ν) = ��(ν, ν0) ∗
{
δ

(
ν − ν0�

4π

)
∗ δ(ν + ν0) + δ

(
ν + ν0�

4π

)
∗ δ(ν − ν0)

}
= W�(∓ν0, ν) ∗ δ(ν ± ν0)︸ ︷︷ ︸

E(ν)

, (6.41)

where W�(∓ν0, ν) is the instrumental function of an extended source

W�(∓ν0, ν) = ��(ν, ν0) ∗ δ

(
ν ∓ ν0�

4π

)
. (6.42)

This function is shown in Figure 6.17. W�(−ν0, ν) operates in the negative wavenumber
region and W�(+ν0, ν) in the positive wavenumber region. The Dirac’s delta functions in
Equation 6.41 can be replaced by a general narrow-band (ν0 ≈ constant) spectrum E(ν), and
the equation is still approximately valid. Note, however, that W�(±ν0, ν) also depends on
the line position ν0, since aperture broadened lines are the narrower and the higher, the closer
to the origin they are. Therefore, Equation 6.41 can only be applied to a spectral piece E(ν)

which is very narrow compared with its distance from the origin.

Figure 6.17: The instrumental function of an extended source is W�(−ν0, ν) in the negative wave-
number region and W�(ν0, ν) in the positive wavenumber region.
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Let us now combine the effects of discrete sampling, truncation, and an extended source.
The observed spectrum can be written as

E�x
L ,�(ν) = W�(∓ν0, ν) ∗ E�x

L (ν)

= W�(∓ν0, ν) ∗ W�x
L (ν) ∗ E(ν)

= W�x
L ,�(ν) ∗ E(ν), (6.43)

where W�x
L ,�(ν) is the total instrumental function of a collimated interferometer,

W�x
L ,�(ν) = W�(∓ν0, ν) ∗

{ ∞∑
k=−∞

2L sinc

[
2π

(
ν − k

�x

)
L

]}
. (6.44)

If the true spectrum is the monochromatic spectrum E(ν) = δ(ν − ν0) + δ(ν + ν0), then
the spectrum given by a collimated interferometer is

E�x
L ,�(ν) =

∞∑
k=−∞

W�(−ν0, ν) ∗ 2L sinc

[
2π

(
ν + ν0 − k

�x

)
L

]

+
∞∑

l=−∞
W�(ν0, ν) ∗ 2L sinc

[
2π

(
ν − ν0 − l

�x

)
L

]
.

This spectrum is shown in Figure 6.18.
The instrumental resolution δν is determined by the FWHM of the function

WL ,�(ν) = W�(ν0, ν) ∗ 2L sinc(2πνL).

If the source is large and the interferogram is long, then the FWHM of W�(ν0, ν), which is
ν0�/(2π), determines the instrumental resolution. If the source is small and the interferogram
is short, then the FWHM of 2L sinc(2πνL), which is 1.21/(2L), gives the instrumental
resolution.

Figure 6.18: The spectrum E�x
L ,�

(ν) given by a collimated interferometer if the true spectrum is E(ν) =
δ(ν − ν0) + δ(ν + ν0).



6.4 Collimated beam and extended light source 95

The light intensity entering the detector is proportional to � (Equation 6.34), and it is
naturally favorable to try to keep the signal-to-noise ratio large. An optimal situation is
achieved when the aperture broadening and the truncation broadening have approximately
equal widths, that is,

ν0�

2π
≈ 1.21

2L
. (6.45)

The optimal truncation of the signal can be found by calculating the truncation point L from
this equation.

Figure 6.19 shows the instrumental line shape function WL ,�(ν) with three different �

values. The optimum situation is almost that in the second row.

Figure 6.19: The total instrumental line shape function WL ,�(ν) with three different � values. The
instrumental resolution δν is determined by the FWHM of the convolution WL ,�(ν) = W�(ν0, ν) ∗
2L sinc(2πνL).
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Example 6.2: The properties of a Michelson interferometer can be examined by finding the
image of one of the mirrors formed by the beamsplitter in such a way that this image lies in
the same direction as the other mirror. This was illustrated in Figures 6.2 and 6.3. We must
imagine that one of the rays, ray 1, sees only the mirror M1, and the second ray, ray 2, sees
only the mirror M2. (a) The rays arrive in the mirrors at the angle α with respect to the optical
axis. What is the optical path difference between the two rays? (b) What is the optical path
difference, if the rays arrive in the mirrors at the angle α, but the mirrors are cube-corner
mirrors? A cube-corner mirror consists of three plane mirrors at direct angles with respect to
each other. This kind of mirror is used in many interferometers.

Solution. (a) This situation is shown in Figure 6.20 (a). If the distance of the mirrors is d, then
the difference of the two paths is 2d cos α. (b) It is sufficient to examine the two-dimensional
case of Figure 6.20 (b). If the distance of the mirrors is d, then the difference of the two paths
is 2d cos α, again.

This result means that if a ray inside the interferometer has a direction error α, then a
wavenumber ν0 is erroneously registered as the wavenumber ν0 cos α.

Figure 6.20: (a) The mirror M1, and the image M′
2 of the mirror M2, of an interferometer. (b) The

cube-corner mirror M1, and the image M′
2 of the cube-corner mirror M2, of an interferometer. In both

pictures, rays 1 and 2 arrive in the mirrors at the angle α. In a perfect cube-corner mirror, all rays are
reflected back in exactly the same direction from which they came.

Example 6.3: Let us consider a small circle in a circular radiation source, shown in Fig-
ure 6.21. The center of the circle is the center of the radiation source. Let the radial angle of
the circle be α, and the solid angle limited by the circle �′. Show that cos α ≈ 1 − �′/(2π).

Solution. The radius of the circle is r ≈ f α. The area inside the circle is

a = πr2 ≈ π( f α)2.

The solid angle

�′ ≈ a

f 2
≈ π( f α)2

f 2
= πα2.
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Figure 6.21: Part of a circular radiation source, limited by a circle of radial angle α as seen from the
lens. The solid angle limited by the circle is �′.

Consequently,

cos α ≈ f√
( f α)2 + f 2

= 1√
1 + α2

≈ 1√
1 + �′/π

≈ 1 − �′

2π
,

since the serial expansion (1 + x)−1/2 = 1 − 1
2 x + 1·3

2·4 x2 − · · · , if −1 < x ≤ 1.

Example 6.4: Derive Equation 6.36,

I�(x) = �

∞∫
−∞

E(ν) sinc

(
νx�

2

)
e

i2πνx
(

1− �
4π

)
dν,

where � is the solid angle of a circular source, E(ν) is the intensity of the source per unit solid
angle and unit wavenumber, and I�(x) is the intensity leaving the Michelson interferometer
and arriving in the detector, as a function of the optical path difference x .

Solution. According to Equation 6.15, the intensity arriving in the detector if the source is a
point source can be expressed as

I (x) =
∞∫

−∞
E(ν)ei2πνx dν.

Every point of an extended radiation source can be considered as a separate point source. If
the radiation source is fully incoherent, we can expect that every source point follows the
above equation separately. In addition, we must take into account the effect of the direction
error (see the two previous examples): the optical path difference of radiation which is emitted
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from a circle which makes an angle α with respect to the optical axis is

xα = x cos α ≈ x(1 − �′

2π
),

where �′ is the solid angle limited by the circle. Consequently, the intensity which arrives in
the detector from a circle at the angle α is

Iα(x) =
∞∫

−∞
E(ν)ei2πνxα dν.

The whole intensity in the detector is obtained by integration over the whole solid angle of the
radiation source:

I�(x) =
�∫

0

Iα(x) d�′

=
�∫

0

∞∫
−∞

E(ν)ei2πνx(1− �′
2π

) dνd�′

=
∞∫

−∞

E(ν)

−iνx

[
ei2πνx(1− �

2π
) − ei2πνx

]
dν

=
∞∫

−∞

−E(ν)

iνx
(e−iνx�/2 − eiνx�/2) ei2πνx−iνx�/2 dν

=
∞∫

−∞

E(ν)

iνx
2i sin(νx�/2) ei2πνx−iνx�/2 dν

= �

∞∫
−∞

E(ν) sinc

(
νx�

2

)
e

i2πνx
(

1− �
4π

)
dν.



6.5 Apodization 99

6.5 Apodization

If the true spectral line is narrower than the aperture broadening ν0�/(2π), then the line shape
which is given by an interferometer is W�(ν0, ν) ∗ 2L sinc(2πνL). The sinc function causes
strong oscillation in the line shape, if ν0�/(2π) < 1.21/(2L). The sidelobes can be reduced
by replacing the truncation function �(x) in Equation 6.20 by a window function (or weight
function) A(x), which equals unity at x = 0 and approaches zero smoothly at large values
of |x |. This method is called apodization, and A(x) is the apodization function. Instead of
Equation 6.22, the spectrum is now

E A(ν) = �
−1{A(x)I (x)} = �

−1{A(x)} ∗ E(ν) = WA(ν) ∗ E(ν). (6.46)

The simplest apodization function is the triangular function

�L(x) =

 1 − |x |

L
, |x | ≤ L ,

0, |x | > L ,

(6.47)

the FWHM of which is L . It can be shown (see Problem 1.6 or 2.10) that the inverse Fourier
transform of the triangular function is

WA(ν) = W�L (ν) = L sinc2(πνL). (6.48)

The spectral line shape in the case where apodization is made with the triangular apodization
function is shown in Figure 6.22.

Figure 6.22: Triangular apodization function A(x) = �L (x), and its inverse Fourier transform, the line
shape W�L (ν) = L sinc2(πνL).
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6.6 Applications of FTS

Fourier transform spectroscopy is in frequent use in many various practical and scientific
applications. Here, we shall review some of these applications.

The most important practical application of FT spectrometers is the qualitative and quan-
titative analysis of unknown samples. Conventionally, the analysis of a gas phase sample has
taken place so that the user records the IR spectrum of the sample using some commercial
instrument with its maximum resolution. Then, looking at the spectrum with the naked eye,
or using some commercial search program based on the correlation between the observed and
a library spectrum, the user tries to identify the unknown compound. The multicomponent
analysis of gas mixtures has usually taken place by the so-called subtraction technique: the
library spectrum multiplied by a constant is subtracted from the observed mixture spectrum.
The constant, which gives the desired concentration of the component, is determined in such a
way that the corresponding component just disappears after subtraction. This analysis method,
however, requires high resolution (0.1 cm−1 – 0.5 cm−1) and is slow and laborious to carry
out. It requires an experienced user, and it is very difficult to automatize.

An example of recent development in gas analysis is the GASMETTM FT-IR gas analyzer
by Temet Instruments Inc. It is based on a new approach to perform gas analysis: it has
relatively low resolution, and employs the multicomponent algorithm [1], where the resolution
of spectra is not a limitation. The use of low resolution in gas analysis provides many
important advantages. For example, the recording time is short, short enough for many process
controls. Fewer data of the observed and the library spectra are needed, and calculation is fast
and requires only a cheap and small computer with a reasonable-sized memory, typically a
microcomputer. Thus, measurement and computations can be performed in one second.

An important scientific application of FTS is molecular spectroscopy. In this application,
infrared FT spectrometers are used to study geometric structures of molecules, and the behav-
ior of molecules in rotations and vibrations. IR spectra reveal quantum mechanical phenomena
and interactions in an effective way. In this type of research, high resolution and accuracy are
very important, and FT-IR spectrometry is the most commonly used method.

Let us, as a simple example of molecular spectroscopy, consider the IR spectrum of a
linear, diatomic molecule. The energy levels of the molecules are, in gas phase,

En,J = Evibr + Erot = (n + 1

2
)hcν0 + hcB J (J + 1) − hcD J 2(J + 1)2, (6.49)

where Evibr is the vibrational energy and Erot the rotational energy of the molecule. The last
term in the latter expression is the effect of the centrifugal distortion of the molecule. n and
J are the vibrational and the rotational quantum number, respectively. h is Planck’s constant
(h = 6.626 0755 × 10−34 Js), and c is the velocity of light. B and D are rotational constants,
which can be expressed as

B = h

8π2 I0c
, (6.50)
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and

D = 4B2

ν2
0

, (6.51)

where I0 is the moment of inertia, depending on the geometrical structure and mass of the
molecule. ν0 is a molecular constant which depends on the force between atoms;

ν0 = 1

2πc
ω0 = 1

2πc

√
k

µ
, (6.52)

where ω0 is the classical oscillation angular frequency, k is string constant, and µ is reduced
mass. When the molecules absorb infrared radiation of wavenumber ν, the energy hcν excites
the molecule to a higher energy level. From Equation (6.49),

ν = �En, j

hc
= ν0(n

′ − n′′) + B ′ J ′(J ′ + 1) − D′ J ′2(J ′ + 1)2

− B ′′ J ′′(J ′′ + 1) + D′′ J ′′2(J ′′ + 1)2, (6.53)

where ′ and ′′ indicate higher and lower energy levels, respectively. The selection rules for
absorption are �n = 1 and �J = 0, ±1. For the R-branch of the spectrum J ′′ = J and
J ′ = J + 1, so that �J = +1. For the Q-branch the selection rule is J ′ = J ′′ = J , and
�J = 0. This branch does not exist for diatomic molecules. For the P-branch, J ′′ = J and
J ′ = J −1, so that �J = −1. The molecular constants ν0, B ′, B ′′, D′, and D′′ can be derived
very accurately by fitting the observed wavenumbers as functions of J .

Figure 6.23 shows an experimental example of a molecular spectrum. The spectrum
contains the ν1-region 1000 ← 0000 of the 16O12C32S molecule. The spectrum was recorded
by the Oulu FT-IR spectrometer [2, 3]. The resolution of the spectrometer was 0.006 cm−1.
The spectrum was apodized. A comparison of the observed line positions with theoretically
calculated wavenumbers showed that the accuracy of this measurement was very high [4].

Figure 6.24 shows another example of a high-resolution FT-IR measurement. The spec-
trum is the bending band ν2 of CO2 near 667 cm−1. This spectrum was also recorded in
Oulu. The instrumental resolution was 0.002 cm−1. Table 6.1 shows how accurately one can
fit the wavenumber according to model equations. The relative errors are typically 10−8. The
vibration energy levels of different normal modes are sometimes very close to each other. In
this case these normal modes can be coupled so that the energy levels are shifted apart. Then
the observed wavenumber cannot be expressed in a closed form (like Equation 6.53), and the
rotational lines of the spectrum are shifted. With proper quantum mechanical calculations, it
is possible to calculate these shifts. The high resolution and accuracy in the wavenumber scale
of the FT-IR spectrometer make it a very effective way to study these kinds of interactions in
molecular spectra.
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Figure 6.23: FTS measurement of the ν1-region of the 16O12C32S molecule. The wavenumber is
expressed in the unit cm−1. The spectrum is apodized. The resolution is 0.006 cm−1, the absorption
path length 1 m, and the gas pressure 40 Pa. This measurement was made at the University of Oulu [4].
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Figure 6.24: Part of the ν2 bending band of CO2 near 667 cm−1 measured by Oulu FT-IR spectrometer
with resolution of 0.0045 cm−1 (a) and with resolution of 0.002 cm−1 (b). In (b), � indicates 12C16O2,
� indicates 13C16O2 and � indicates 16O12C18O. [3]
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Table 6.1: Calculated wavenumbers, and difference between observed and calculated wavenumbers, of
the fundamental of the ν2 band 0110 ← 0000 of CO2, shown in Fig. 6.24. Standard deviation is about
1.3 × 10−5 cm−1. The notation A means overlapping lines that are not in the fit.

J P(J ) calc. obs. − calc. R(J ) calc. obs. − calc.
0 668.161103 0.000014
2 665.819796 0.000010 669.726165 – 0.000020
4 664.263152 – 0.000005 671.294548 – 0.000018
6 662.709919 – 0.000022 672.866225 – 0.000008
8 661.160121 0.000006 674.441168 – 0.000021

10 659.613781 0.000001 676.019349 0.000018
12 658.070921 0.000013 677.600737 0.000027
14 656.531563 – 0.000003 679.185303 0.000021
16 654.995728 0.000009 680.773015 0.000030
18 653.463436 – 0.000009 682.363842 0.000020
20 651.934706 – 0.000019 683.957751 – 0.000004
22 650.409558 0.000002 685.554710 – 0.000008
24 648.888009 – 0.000035 A 687.154683 – 0.000006
26 647.370076 – 0.000004 688.757637 0.000003
28 645.855776 – 0.000021 690.363535 0.000004
30 644.345124 – 0.000017 A 691.972343 – 0.000008
32 642.838135 – 0.000003 693.584021 – 0.000019
34 641.334824 – 0.000016 695.198534 0.000000
36 639.835204 0.000002 696.815842 0.000004
38 638.339287 0.000003 698.435906 – 0.000014
40 636.847086 0.000009 700.058686 – 0.000008
42 635.358612 0.000008 701.684142 0.000007
44 633.873874 0.000020 703.312232 0.000001
46 632.392884 0.000005 704.942913 – 0.000008
48 630.915650 0.000019 706.576144 0.000001
50 629.442179 0.000015 708.211879 0.000006
52 627.972480 – 0.000009 709.850075 0.000003
54 626.506560 – 0.000019 711.490687 – 0.000026
56 625.044423 0.000012 713.133668 0.000011
58 623.586076 – 0.000015 714.778972 0.000015
60 622.131522 – 0.000005 716.426551 0.000081 A

In dispersive FT-IR spectrometry the sample is placed in one arm of a Michelson-type
interferometer. The optical path length in that arm is increased by the amount 2d[n(ν) − 1],
where n(ν) is the refractive index of the sample of thickness d at wavenumber ν. This causes
the centerburst of the interferogram to be shifted to the point x = 2d[n(ν) − 1], where n(ν)

is the average refractive index. Thus the interferogram I ′(x) is asymmetric, and its inverse
Fourier transform is a complex function of ν:

�
−1{I ′(x)} = �cos{I ′(x)} − i�sin{I ′(x)}, (6.54)

where �cos is the cosine transform and �sin the sine transform (see Equation 2.3). The
dispersion spectrum n(ν) of the sample can be computed from the phase spectrum

φ(ν) = − arctan
�sin{I ′(x)}
�cos{I ′(x)} = 2πν 2d[n(ν) − 1]. (6.55)
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Neglecting losses in reflections, the absorption spectrum of the sample can be derived from
the amplitude spectrum

A(ν) =
√

[�cos{I ′(x)}]2 + [�sin{I ′(x)}]2. (6.56)

The FT technique is the only method which can give the broadband absorption and dispersion
spectra of a sample simultaneously.

FT-IR spectrometers are very rapid-scanning instruments, but in some cases the lifetime
of a species can be shorter than the scanning time of the interferometer. This problem can be
solved by time-resolved spectrometry. There are two basic methods to record time-resolved
spectra. Actually, both techniques are equivalent, but one was developed for step-scanning
interferometers and the other for conventional rapid-scanning interferometers. Let us examine,
for example, the step-scanning interferometers. In step-scanning interferometry, the moving
mirror is stopped for a while at each sampling point x j . The moving mirror is moved from
one sample point to the next one as quickly as possible. In the time-resolved method the
time-dependent phenomena are repeated at each sampling point x j , and the interferogram
signal values I (x j , t0), I (x j , t1), . . ., I (x j , tn) are collected at discrete time t0, t1, . . . , tn
with a short time interval (about 1 µs). Thus, the inverse Fourier transform of the sequence
I (x0, t j ), I (x1, t j ), . . . , I (xm, t j ) is the spectrum at the time t j . The temporal resolution �t
of this technique is limited by the response of the detector and hence can be of the order of
microseconds.

Photoacoustic spectroscopy is based on the photoacoustic phenomenon. If radiation goes
through an absorbing material, the absorbed energy generates heat. If modulated radiation
goes through the gas cell, then the absorption generates heat waves and further pressure pulses
or sound waves, which can be detected, for example, by a microphone. If the sample is
solid, it can be placed into a cell filled with a nonabsorbing noble gas like xenon, and the
absorbed energy produces sound waves in the noble gas. A photoacoustic cell can be resonant
or nonresonant. The resonant operation can be achieved by choosing the dimensions of the
cell in such a way that a standing sound wave is produced inside the cell. There is also
an alternative method of measuring temperature or pressure fluctuations of the gas around a
solid sample, introduced by the absorption of modulated radiation: the thermal gradients and
consequent refractive index gradients in the contact noble gas cause a probe laser beam to be
deflected. This method is called beam deflection technique.

Earlier, the photoacoustic method was applied mainly in laser spectroscopy, but nowadays
photoacoustic detection is used most successfully also in FT-IR spectrometers. An interfer-
ence record F(x) may have a strong constant base level 1

2 F(0) due to a wide background
spectrum. The area of the whole spectrum is 1

2 F(0) (see Equation 6.13). However, the
absorption signal due to spectral lines under examination is very small compared with 1

2 F(0),
typically between 10−3 × F(0) and 10−6 × F(0). This is the well-known dynamic range
problem of the FTS method: the interesting small signals are superimposed on a very large
constant level. The dynamic range problem can be cancelled by photoacoustic detection.
In the photoacoustic method only absorption lines produce a signal, background does not.
Consequently, a region where there are no absorption lines does not generate any signals.

The photoacoustic system is a cell and a selective detector at the same time. The photo-
acoustic FT-IR spectrometer is an especially effective method to study coatings on a non-
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transparent material like metal. Of course the method has also some weak points. One of them
is that the photoacoustic detection system is very sensitive to all kinds of external sounds and
vibrations.

In addition to those mentioned above there are very many other applications of FT spec-
trometry. Useful practical applications of FT-IR spectrometers include quality control, surface
control, semiconductor studies, biochemical or biomedical applications like phase transition
of lipids, and infrared microscopy. Very often an FT-IR spectrometer is connected to gas or
liquid chromatography. In scientific research, FTS may be applied also in polarization studies,
matrix isolation, low-temperature experiments, surface analysis, attenuated total reflectance
(ATR) studies, emission studies, biochemical and biomedical applications, and so forth.

Problems

1. A spectrometer which is based on a Michelson interferometer measures the optical path
difference with a laser which emits radiation in three modes: ν0 − �ν, ν0 and ν0 + �ν.
The corresponding intensities of the modes are 1

2 I , I and 1
2 I , respectively. Compute the

intensity which is obtained in the detector as a function of the optical path difference. At
which value of the optical path difference does the interferogram vanish (i.e., the intensity
arriving in the detector does not oscillate) for the first time? You can assume that the line
width of the modes is zero and that the spectrum is symmetric.

2. A Fourier transform spectrometer makes a constant error in the measurement of the
optical path difference. Because of this, the peak of the interferogram seems to lie at
the point x = ε, instead of x = 0. Show that if a two-sided signal is measured, then this
error does not affect the power spectrum. You can neglect the change of the truncation
points.

3. A Fourier transform spectrometer makes a periodic error in the measurement of the opti-
cal path difference: instead of the measured path difference x the true path difference is

x − ε sin(2πx/K ). Applying the serial expansion exp(i z sin θ) =
∞∑

n=−∞
Jn(z) exp(inθ),

examine how the error distorts the spectrum of a monochromatic source. (The true
interferogram is I0 cos(2πν0x).)

4. When an interferogram, measured over the interval from −L to L by a Fourier transform
spectrometer, is transformed, a fully monochromatic signal (whose spectrum is Dirac’s
delta peak) is described as a sinc-shaped spectral line constant × sinc(2π Lν). Since this
curve determines the size of the smallest detail which can be observed in the spectrum,
it is natural to call its FWHM 1.21/(2L) the theoretical resolution of the spectrum.
Calculate the smallest number of data which enables the registration of a spectrum in
the wavenumber region 0–4000 cm−1 at the resolution ≤ 0.5 cm−1. Take into account
the requirement of FFT that 2N must be an integer power of two.

5. Infrared spectra are measured by a Fourier transform spectrometer. The sampling interval
�x is such that νmax = 1/(2�x) = 5000 cm−1. Outline how the following (true) spectra
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look like after the computation of the inverse Fourier transform of the interferogram.
(Since a single wavenumber is described in the interferometer as a cosine wave, the true
spectra must be imagined to be symmetric; otherwise the spectrum and the interferogram
would not constitute a Fourier transform pair.)

6. A Fourier transform spectrometer has an optical filter, which is transparent only in the
wavenumber region 10 000 cm−1–15 000 cm−1. This region of a spectrum is shown in
the following picture. Outline, how this spectrum will look like in a measurement where

(a) νmax = 1/(2�x) = 15 000 cm−1,

(b) νmax = 10 000 cm−1,

(c) νmax = 5000 cm−1.

In each case, plot the whole wavenumber region (−νmax, νmax).

7. A spectrum under examination had spectral lines of the Loretzian shape. The FWHM of
all the lines was 2σ . At which value of the optical path difference x has the amplitude a
of the part of the interferogram corresponding to one line dropped down to one tenth of
the constant component 1

2 F(0) of the intensity in the detector?

8. If the angle of a beam propagating inside a Michelson interferometer is α, then a wave-
number ν0 is observed as the wavenumber ν0 cos α. Let the source be circular. Thus, a
monochromatic spectral line at wavenumber ν0 spreads in the interval [ν0 cos αmax, ν0],
where αmax is the direction error of that beam which is emitted from the edge of the
source. Compute the line shape which is observed in the case where the brightness of the
source decreases linearly from a top value in the center of the source to zero in the edge.
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9. The radiation source of a Michelson interferometer is a circular aperture of radius r . The
focal length of the collimator lens is f . How far is it necessary to register a mono-
chromatic signal of wavenumber ν0, if we wish that the FWHM of the sinc-shaped
distortion due to truncation would be as large as the boxcar distortion due to the finite
size of the radiation source? You may assume that f � r .

10. According to the similarity theorem, the stretch a function by a constant leads to the
contraction of its transform by the same constant. Consequently, the product of the
FWHM of a spectral line shape and the FWHM of the corresponding interferogram
amplitude is invariant. Find the value of this product for the following spectral line
shapes:

(a) Lorentzian line
σ/π

ν2 + σ 2
,

(b) Gaussian line e−αν2
(α > 0),

(c) sinc line sinc(2π Lν).

11. (a) Calculate a numerical estimate (as exact as possible) for the FWHM of the function
sinc2(πT f ).

(b) A signal which consists of cosine waves is known in the interval −T ≤ t ≤ T . The

signal is apodized with the triangular function (1 − |t |
T

). What is the minimum value

of T , if we wish that the cosine waves cos(2π f1t) and cos(2π f2t) would be resolved
in the spectrum, if f1 = 100.0 MHz and f2 = 100.1 MHz? Spectral lines are said
to be resolved, if their distance is at least the FWHM of one line.

12. A signal consists of two cosine waves at the frequencies f1 = 199 MHz and f2 =
200 MHz. Samples of the signal are taken in the time intervals �t over the interval
from −T to T . The samples are apodized with the triangular function

�T (t) =

 1 − |t |

T
, |t | ≤ T,

0, |t | > T,

before discrete Fourier transform.

(a) What is the smallest value of T at which we are able to resolve the two frequencies
in the spectrum? (Then the FWHM of one spectral line is f2 − f1.)

(b) What is the largest possible value of �t if we wish that the aliasing point fmax would
be at least in the distance of ten FWHM from the larger frequency? Use the value of
T which you obtained above.

Hint: The FWHM of the function sinc2(πT f ) is approximately 1.7718/(2T ).



7 Nuclear magnetic resonance (NMR)
spectroscopy

7.1 Nuclear magnetic moment in a magnetic field

Most atomic nuclei have a magnetic moment �, which is proportional to the angular momen-
tum J of the nucleus,

� = γ J. (7.1)

The proportionality constant γ is called the gyromagnetic ratio, and it is a characteristic of the
nucleus. According to quantum mechanics, the angular momentum is quantized, and can only
possess values which satisfy the equation

|J|2 = J (J + 1)�2, J = 0, 1, 2, 3, . . . , (7.2)

where J is the nuclear spin quantum number, and � = h
2π

= 1.054 572 66 × 10−34 Js. The
z-component of J can have 2J + 1 distinct values

Jz = m J�, m J = J, J − 1, . . . , 0, −1, . . . , −J. (7.3)

Let us consider a nucleus in an external static magnetic field B, which is assumed to lie
in the z-direction. Applying Equations 7.1 and 7.3, the energy E of interaction of the nucleus
and the magnetic field can be written as

E = −� · B = −γ m J�B, (7.4)

where B is the magnitude of B. Since the z-component Jz of the angular momentum of
the nucleus is quantized, also the interaction energies of nuclei in a static magnetic field are
quantized, and they may only have 2J + 1 distinct values. At thermal equilibrium, the relative
probabilities of each energy state are given by the Boltzmann distribution.

The external magnetic field produces a torque N, which tries to change the angular mo-
mentum and the magnetic moment of the nucleus:

N = dJ
dt

= �× B, or
d�

dt
= �× (γ B). (7.5)

The latter equation is the equation of motion of precession: the magnetic moment vector
precesses about the magnetic field vector. The angular frequency of this motion is

�L = −γ B. (7.6)
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The size of an infinitesimal change |d�| of the magnetic moment in time dt , illustrated in
Figure 7.1, can be expressed as

|d�| = |�| sin θ |dφ| = γ |dJ| = γ |N| dt = |�| γ |B| sin θ dt, (7.7)

where θ is the angle between� and B, and |dφ| is the change of the angle of� in the xy-plane.
Consequently, we can see that the angular frequency of the precession is, indeed,

∣∣∣∣dφ

dt

∣∣∣∣ = ωL = γ B, (7.8)

where ωL = |�L |. The precession of the nuclear magnetic moment about the external
magnetic field direction is called the Larmor precession, and its angular frequency �L is
the Larmor angular frequency.

Figure 7.1: Larmor precession of a nucleus in an external static magnetic field B. The magnetic moment
of the nucleus is �. The precession angle dφ corresponds to the change d� of the magnetic moment.

The total macroscopic magnetization M of all nuclei is the sum of all magnetic moments,

M =
∑

i

�i . (7.9)

In a static magnetic field, the precessing magnetic moment vectors have arbitrary phases,
and the angles φi which they make in the xy-plane are randomly distributed. Consequently,
the x- and y-components of the magnetic moments cancel each other, and the macroscopic
magnetization lies along the z-axis. Figure 7.2 shows an example of the summation of the
magnetic moments of nuclei. In this example, the quantum number J = 1

2 , and there are only
two possible energy states.

It is often useful to represent the Larmor precession in a coordinate system x ′y′z which
rotates about the z-axis at an angular frequency �. The rotating coordinates are illustrated in
Figure 7.3. According to classical mechanics, for any vector � and angular frequency �,

(
d�

dt
)rot = (

d�

dt
)fixed − � × �, (7.10)
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Figure 7.2: An example of the summation of the magnetic moments � of nuclei. The spin quantum
number of the nuclei is J = 1

2 , and there are only two possible energy states. The total magnetic
moment M lies along the direction of the static magnetic field B, in the z-direction.

Figure 7.3: Magnetic moment � in the coordinate frame x ′y′z which rotates about the z-axis of the
fixed coordinate frame xyz at the angular frequency �. B is a static magnetic field.

where the suffix fixed refers to the fixed frame and rot to the frame rotating at the angular
frequency �. Inserting this equation into Equation 7.5, we obtain the equation of motion of a
magnetic moment in a static magnetic field in the rotating coordinates:

(
d�

dt
)rot = γ�× Beff, (7.11)
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where Beff is the effective magnetic field in the rotating coordinate system,

Beff = B + �/γ. (7.12)

We can see that in the rotating frame the magnetic moment precesses about the effective
magnetic moment Beff at the angular frequency −γ Beff.

7.2 Principles of NMR spectroscopy

The goal of nuclear magnetic resonance, NMR, is to study molecular structures, molecular
motion, and various chemical characteristics. This kind of information can be found in the
nuclear magnetic resonance spectrum. The NMR spectrum reveals the Larmor frequencies of
the nuclei in a sample.

As explained in the previous chapter, the sum of the precessing magnetic moments of
nuclei in a static magnetic field, that is, the macroscopic magnetic moment M, lies along the
z-axis (the direction of the magnetic field). In order to be able to measure M to obtain an NMR
spectrum, it is necessary to rotate M in such a way that an observable component is achieved
along, say, y-axis. In NMR, this is obtained by applying a weak oscillating magnetic field
perpendicular to the static magnetic field, say, in x-direction, for a certain period of time.

Let us add an oscillating magnetic field

Bx = 2B0 cos(ωt)ux , (7.13)

which lies along the x-direction. ux is the unit vector in the positive x-direction. The oscillat-
ing magnetic field vector can be divided into two components, one rotating clockwise and one
counterclockwise about the z-axis at the angular frequency ω. The component which rotates in
the same direction as the magnetic moments is significant in NMR, but the component which
rotates in the opposite direction can be neglected. In a rotating coordinate frame which rotates
at the same angular frequency ω about the z-axis the significant component appears static, and
can be written as

B0 = B0ux ′ . (7.14)

The overall effective magnetic field experienced by a nuclear magnetic moment is, in the
rotating frame,

Beff = B + �/γ + B0. (7.15)

In the rotating frame, the nuclear magnetic moment vector precesses about this effective
magnetic field vector. This situation is illustrated in Figure 7.4.

The same situation in the laboratory frame is illustrated in Figure 7.5. If the angular
frequency of the oscillating magnetic field (and the rotating frame) ω is far from the Larmor
angular frequency ωL of the nuclear magnetic moment, then the magnetic moment contin-
ues to precess around the z-axis almost as before, only its orbit is slightly disturbed by the
additional oscillating field (nutation). However, if the angular frequency of the oscillating
magnetic field ω is the same as the Larmor angular frequency ωL , that is, they are in resonance,



7.2 Principles of NMR spectroscopy 113

Figure 7.4: Precession of a nuclear magnetic moment vector� about the effective magnetic field Beff =
B + �/γ + B0 in a rotating coordinate frame. The frame as a whole rotates about the z-axis (direction
of B) at the angular frequency ω of the oscillating field B0. Thus B0 rotates together with the coordinate
frame.

then the situation is very different. In this case, the nuclei are able to receive energy from
the oscillating magnetic field, and they may be transferred to higher energy levels. As the
energy level grows, the angle θ between the magnetic moment of an individual nucleus and
the positive z-direction becomes larger: the magnetic moment “falls down”.

Energy can be transferred only if the nucleus precesses in the same phase with the os-
cillating field, and this makes the precession of the magnetic moment vectors coherent. At
the macroscopic level, this means that the x- and y-components of the moments no longer
cancel each other. The macroscopic magnetization M is no longer directed along the z-axis,
but acquires x- and y-components, and starts also to “fall down”. In resonance,

� = �L = −γ B, (7.16)

and the effective magnetic field in the rotating frame is

Beff = B0. (7.17)

Consequently, in the rotating frame, the macroscopic magnetization precesses about the x ′-axis
at the angular frequency

ω0 = γ B0. (7.18)

This angular frequency indicates how rapidly the macroscopic magnetization falls down from
the direction of the z-axis.
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Figure 7.5: The movement of a nuclear magnetic moment � in a magnetic field which consists of a
static magnetic field B and an oscillating magnetic field Bx = 2B0 cos(ωt)ux . The oscillating magnetic
field can be divided into two components, one rotating clockwise and one counterclockwise. Only one of
the components is significant in NMR, the one which rotates in the same direction where the magnetic
moments are precessing. If the angular frequency ω of the oscillating magnetic field is far from the
Larmor angular frequency ωL of the nuclear magnetic moment, then the magnetic moment precession
around B is only slightly distorted. If ω and ωL are in resonance, then � will start to “fall down”.

In NMR, the macroscopic magnetization is usually made to fall down by applying an
oscillating single-frequency magnetic resonance field for a short duration �t . This is called
the excitation of NMR. The field strength and the duration of the pulse are chosen in such a
way that the macroscopic magnetization will fall down a desired angle θM . θM may be chosen
to be, for example, 90◦, which is called the 90◦ pulse. After a 90◦ pulse the magnetization
lies in the xy-plane. A common choice is the 30◦ pulse. If θM is chosen to be 180◦, then the
direction of the macroscopic magnetization after excitation is the negative z-direction.

After excitation, the macroscopic magnetization M rotates about the z-axis (in the labora-
tory frame). It is now easy to measure the y-component of M, because it varies as

My = M0 cos(ωL t), (7.19)

and induces a sinusoidal electric current in a coil of wire which is wrapped around the y-axis
and used as the receiver.

After the excitation pulse is switched off, the nuclear magnetic moments tend to relax back
towards the thermal equilibrium distribution. This occurs by several mechanisms. Energy
may be transferred from the nucleus to surrounding molecules as thermal motion. This is
known as spin-lattice or longitudinal relaxation. Energy may also be transferred to nuclei of
a different type. This is called spin-spin or transverse relaxation. As a result of the relaxation
of the nuclear magnetic moments, also the macroscopic magnetization M starts to relax back
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towards the direction of the z-axis. The relaxation is exponential. The y-component of M is

My = M0e−t/τ cos(ωL t), (7.20)

where τ is the relaxation time. In NMR, this is the signal measured by the receiver. It is
called the free induction decay, FID, signal. The FID-signal is a time-domain signal, which is
sampled, stored, and Fourier transformed. At this stage, the properties of Fourier transforms
should be considered. One should, for example, remember the Nyquist theorem in deciding
the sampling interval and determining the maximal detectable frequency. The methods of
processing the signal and the spectrum, presented in Chapters 11–13, can be applied. The
final result of an NMR measurement is the NMR spectrum in the frequency-domain.

Figure 7.6 illustrates the NMR process.

7.3 Applications of NMR spectroscopy

The static magnetic field used in NMR measurements is typically a few Tesla in magnitude.
Strong magnetic fields can be obtained by superconducting magnets. The Larmor frequencies
fL = ωL/2π of nuclei are, then, of the order of tens or hundreds of MHz. The duration of
the radio-frequency magnetic field pulse is typically a few µs, or even less, and the amplitude
of the pulse is a few Gauss. The relaxation time after the pulse is switched off may be some
seconds.

Because the excitation pulse, which makes the macroscopic magnetization fall down, is a
truncated wave in t-domain, it covers a certain range of frequencies in the f -domain. If the
duration of the pulse is �t , it contains frequencies approximately from ω − 1

�t to ω + 1
�t .

A pulse of the order of 1 µs may give information over a frequency range of a few kHz.
Each set of distinct nuclei whose Larmor frequency falls in the frequency range of an

NMR measurement will produce an exponentially decaying sine wave in the FID signal. The
Larmor frequencies of different types of nuclei are easy to distinguish in a nuclear magnetic
resonance spectrum. The width of one spectral peak may be as small as 1 Hz.

The Larmor frequency depends on the magnitude of the static magnetic field. The res-
olution of NMR spectroscopy can be very high, and effects of very small variations of the
magnetic field strength on the Larmor frequency can be distinguished. The environment of
each nucleus produces such variations. The external magnetic field may cause circulation
of electrons in the surroundings of the nucleus, and this may reduce the true magnetic field.
The electron circulation depends on the chemical bonds near the atom. Also the magnetic
moments of other nuclei in the vicinity may affect the magnetic field. In practice, the true
magnetic field is

Btrue = (1 − σ)B, (7.21)

where σ is a shielding factor. As a result, the Larmor frequencies of similar nuclei may differ
if they are situated in different surroundings.

NMR spectroscopy can be employed to identify chemical bonds, to find the orientation
of a bond, to measure distances of the nuclei, to determine molecular structures, to examine
chemical dynamics, and so forth. In addition to high-resolution NMR spectroscopy, there is
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Figure 7.6: The principle of the NMR process. Initially (t = 0), the macroscopic magnetic moment M
lies along the z-axis, which is the direction of the static magnetic field B. An oscillating magnetic field,
oscillating at the Larmor angular frequency (ωL = γ B), is switched on. In the rotating coordinate frame
x ′y′z it is seen as the static magnetic field B0, which rotates about the z-axis together with the frame. M
starts to fall down. At t = �t the oscillating field is switched off. At this moment, M makes an angle
θ = γ B0�t with respect to the z-axis, and its y′-component My′ reaches a maximum. After the switch-
off (t > �t), M relaxes back towards the direction of the z-axis, and My′ decreases exponentially. At
t = ∞ M lies along the z-axis again.

a variety of ways to tailor NMR for different purposes. Modifications of NMR may be used
to study highly relaxing nuclei which exhibit broad spectral lines, to examine solids, to make
three-dimensional images, and so forth.

Figure 7.7 is an example of an experimental high-resolution NMR spectrum, measured
at the University of Oulu. It is a spectrum of monodeuterobenzene C6H5D. The structure
of the spectrum is determined by the proton chemical shifts and proton-proton spin-spin
and dipole-dipole couplings. Figure 7.8 shows an example of an experimental solid state
NMR measurement, made at the University of Turku. The signal is the proton solid echo.
The frequency spectrum, calculated from the signal by FFT, reveals features of solid state
molecular structure.
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Figure 7.7: 1H NMR spectrum of monodeuterobenzene C6H5D in liquid crystal Merck Phase 4 solvent.
The spectrum is recorded in the nematic phase of the liquid crystal. The Larmor frequency was 300 MHz.
The figures on the abscissa are in Hz relative to an arbitrary reference. Courtesy of Susanna Ahola, Anu
Kantola and Jani Saunavaara, NMR Research Group, Dept. of Physical Sciences, University of Oulu.
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Figure 7.8: NMR measurement of CH3COONa·3D2O at 77 K. The purpose of the measurement was to
study solid state molecular interactions and molecular dynamics. Left: The real part (the amplitude, solid
line), and the imaginary part (the phase, dashed line) of the proton solid echo. Right: Frequency shifts
from the proton Larmor frequency, calculated from the proton solid echo. These frequency shifts are
caused by chemical interactions. Courtesy of Wihuri Physical Laboratory, Dept. of Physics, University
of Turku.



8 Ion cyclotron resonance (ICR) mass
spectrometry

8.1 Conventional mass spectrometry

When an ion of charge q moves at the velocity v in a region where there are an electric field E
and a magnetic field B, it is subjected to the Lorentz force

F = q(E + v × B). (8.1)

In the absence of an electric field, only the magnetic component of the force is present.
Because of the properties of the vector product, the magnetic force is perpendicular to the
plane determined by the velocity and the magnetic field. If v would be parallel to B, then the
force would be zero.

Since the magnetic force is perpendicular to the velocity, the work done by the force is
zero, and the kinetic energy of the ion moving in the magnetic field remains constant. The
direction of the velocity changes, but the magnitude remains the same. If the magnetic field is
uniform, then the ion moves in a uniform circular orbit. The equation of motion of an ion in a
uniform magnetic field is

F = mv2/R = qvB, (8.2)

where m is the mass of the ion, and R is the radius of the circular orbit, and B is the magnitude
of the magnetic field. Equation 8.2 yields

R = mv/q B. (8.3)

A mass spectrometer is an instrument which separates ions of different mass-to-charge
ratios m/q. In a uniform magnetic field, ions of different m/q but constant velocity v have a
different radius of orbit R, and they can be separated. Consequently, a mass spectrum of the
ions can be obtained.

Figure 8.1 shows a schematic illustration of a conventional mass spectrometer. Ions are
produced by an ion source, and their direction is determined by the slits S1, S2 and S3. The
magnitude of the velocity of the ions is determined by the electric field E and the magnetic
field B, perpendicular to each other and to the direction of the velocity. Ions are subjected to
the Lorentz force (Equation 8.1), and only ions which satisfy the condition

q E = qvB, (8.4)

Fourier Transforms in Spectroscopy. J. Kauppinen, J. Partanen
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Figure 8.1: Conventional mass spectrometer. Ions are produced by an ion source, and their direction is
determined by the slits S1, S2 and S3. The magnitude of the velocity of the ions is determined by the
electric field E and the magnetic field B. Another magnetic field B′ forces the ions to circular orbits.
The ions are registered by a photographic plate. The direction of the magnetic fields is perpendicular to
the plane of the paper, inward.

that is, have the velocity

v = E/B, (8.5)

continue moving straight forward and can enter the main chamber through the slit S3. In the
main chamber there is another uniform magnetic field B′. In this field, the radii of the ions are
different, depending on the m/q value of the ion. The radii are given by

R = mv/q B ′ = m E/q B B ′. (8.6)

Ions are registered by a photographic plate, where ions of different m/q arrive in different
spots. The majority of the ions which are analyzed generally have a positive unit charge, and
the mass m can be obtained directly from Equation 8.6. The result of the measurement with
the spectrometer is the mass spectrum of the ions. A conventional mass spectrum is illustrated
in Figure 8.2.

In practice, ions are often produced from sample molecules by bombarding them with a
high-energy electron beam. The positive fragments of the molecules are then accelerated and
directed to the main chamber of the mass spectrometer. Instead of a photographic plate, ions
may be detected by a collector, where they generate an electric current which is amplified and
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Figure 8.2: Conventional mass spectrum: intensity I of ions as a function of the mass m. The charges
of the ions are assumed constant.

measured. The magnitude of the magnetic field in the main chamber may be varied, and in
this way the mass-to-charge ratio of ions which hit the collector can be varied continuously.

8.2 ICR mass spectrometry

In ion cyclotron resonance mass spectrometry, ICR-MS, ions are stored in an ICR analyzer
cell in a static magnetic field. Ions rotate in circular paths, trapped by the magnetic field and
additional electric fields. The movement of ions is made coherent by applying in the trap an
oscillating, resonant electric field. A signal which reveals the coherent movement of ions is
obtained by detector plates.

As explained in Chapter 7, the path of an ion in a uniform magnetic field is a circular orbit.
The angular frequency ωc of the ion is

ωc = v/R = (q/m)B. (8.7)

This angular frequency is called the ion cyclotron frequency . We can see that it is independent
of the velocity v, and depends only on the ratio m/q and on the field B. An ion of a certain
m/q value proceeds at the same cyclotron frequency, independent of the velocity of the ion.
The magnitude of the static magnetic field of a mass spectrometer is typically of the order of
a few Tesla. Thus, the cyclotron frequencies range typically from a few kHz to a few MHz.

Equation 8.6 gives the ion cyclotron orbital radius. If an ion is in thermal equilibrium with
its surroundings at a temperature T , then its kinetic energy 1

2 mv2 is, in the average, equal
to kT , where k is the Boltzmann constant. Solving v and inserting it in Equation 8.6 yields
the orbital radius of an ion in equilibrium in a uniform magnetic field,

R = 1

q B

√
2mkT . (8.8)

In a magnetic field of a few Tesla, the orbital radius of an ion in equilibrium at the room
temperature is, generally, much less than 1 mm. At higher temperatures and higher kinetic
energies the ion cyclotron orbital radii may be of the order of centimeters.
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Taking the first derivative of ω in Equation 8.7 with respect to m, we obtain that

dω

ω
= −dm

m
. (8.9)

This means that the mass resolution of ICR is equal to the ion cyclotron frequency resolution.
The mass resolution can be written as

�m

m
= −m�ω

q B
. (8.10)

Let us choose the coordinates in such a way that the magnetic field is directed along the
z-direction: B = Buz . The magnetic field traps an ion effectively in a circular orbit in the
xy-plane, and the ion cannot escape from the trap in the x- or y-directions. The ion may,
however, move freely in the z-direction. In an ICR mass spectrometer, the escape of an ion
in the z-direction is prevented by applying a small electrostatic potential to electrodes in both
sides of the ion trap, at z = ± a

2 , where a is the height of the trap. These trapping electrodes
expel ions towards z = 0 in the center of the trap.

If the trap is cubic, and the trapping electrodes are connected to a voltage VT , whereas the
plates at the other four walls of the trap are grounded, then the electrostatic potential near the
center of the trap can be shown to be, approximately,

V (x, y, z) = VT

3
− αVT x2

a2
− αVT y2

a2
+ 2αVT z2

a2
, (8.11)

where α = 1.386. In the z-direction, the electric field is

Ez(z) = −dV

dz
= −4αVT

a2
z = −kzz, (8.12)

where kz is a constant. The electric force is

Fz(z) = m
d2z

dt2
= −qkzz. (8.13)

This force makes the ion oscillate back and forth around z = 0 at the frequency ωt = √
kzq/m

(where q > 0). This trapping frequency of oscillation in z-direction is, generally, much smaller
than the cyclotron frequency. The circular motion of ions in the ICR-MS cell is, hence,
modulated by a slight oscillation in the z-direction.

The electrostatic potential of Equation 8.11 produces also a radial electric field

E(r) = 2αVT

a2
r = Err (8.14)

in the xy-plane. Consequently, the radial force in the trap consists of both the magnetic force,
pulling the ion towards the center, and an electric force, pushing the ion away from the center.
The equation of motion of an ion in the xy-plane inside a cubic ICR mass spectrometer is thus

mω2r = q Bωr − q Er r. (8.15)
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This equation has two solutions:

ω0 = q B +
√

q2 B2 − 4mq Er

2m
, (8.16)

and

ωm = q B −
√

q2 B2 − 4mq Er

2m
. (8.17)

ω0 is the frequency of the orbital motion of the ion. We can see that the cyclotron frequency
(Equation 8.7) is slightly reduced by the electric trapping potential. In exact calculations,
the cyclotron frequency ωc given by Equation 8.7 must be replaced by ω0. ωm is called the
magnetron frequency. It is much smaller than the cyclotron frequency. The existence of ωm

means that an ion moving in the ICR cell is also making a small precession around its orbit.
In an ICR mass spectrometer, the movement of ions is detected by placing detector plates

at the sides of the trap and measuring the charge which is induced in the detector plates by the
moving ions. In a cubic trap, the plates may be placed at x = ±a/2, where a is the width of
the trap.

In a static electromagnetic ion trap, the ion cyclotron orbital motion is incoherent: the
phase of the orbital motion of ions is random. No overall charge is induced in the detector
plates, because the average of movements of all ions is zero. In order to obtain a signal in
the detector plates, the movement of ions should be spatially coherent: ions should move
in the same phase. A coherent movement of ions can be created by applying in the trap an
oscillating, resonant electric field, produced by excitation plates placed at the sides of the trap.
This electric field is made to oscillate at the cyclotron frequency of the ions of interest:

E(t) = cos(ωct). (8.18)

The power absorption of the ions is proportional to the dot product E(t) · v, and the magnitude
of the velocity of resonant ions and the radius of their orbit will grow. Due to the oscillating
electric field, ions are forced to move in their orbits in the same phase. Resonant ions form
ion packets, which rotate at growing orbits. The oscillating excitation voltage is switched off
after a suitable period of time, before the orbits of the ions grow too large for the trap.

However, the acceleration of ions whose cyclotron frequency differs clearly from the
frequency of the excitation electric field experience only a limited acceleration. The radius
of orbit of off-resonant ions grows only minimally. If we wish to study a larger frequency
region in one measurement, it is necessary to apply a more complicated excitation pulse, as
discussed in the next section.

Figure 8.3 shows the electrodes around a cubic electromagnetic ion trap, used in ICR-MS.
The ion trap may also be designed in several alternative ways.

As a coherent ion packet rotates in the cell, it induces a signal in the detector plates. The
signal obtained is of the form

I (t) ∝ N (t) cos(ωct), (8.19)

where N (t) is the number of ions rotating in the same phase at the frequency ωc. After the
excitation voltage is switched off, the number of the rotating ions is reduced by collisions:

N (t) = N0e−t/τ , (8.20)
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Figure 8.3: Electrodes around a cubic electromagnetic ion trap, used in ion cyclotron resonance mass
spectrometry.

where τ is a damping constant. In addition to this, the signal recorded in the detector plates
is reduced because ions whose natural cyclotron frequencies differ from the exact excitation
frequency begin to differ in phase. Consequently, the whole signal, which is obtained in the
detector plates is of the form

I (t) ∝
∑

i

Ni e
−t/τi cos(ωi t + φi ), (8.21)

where Ni , τi , ωi , and φi are the number, the damping constant, the cyclotron frequency, and
the initial phase of different types of ions, respectively.

8.3 Fourier transforms in ICR mass spectrometry

In principle, in an ICR mass spectrometer, an infinitely long excitation at the frequency ωc

would accelerate only ions in exact resonance. In practice, however, the excitation must be
accomplished by a short pulse of duration T . We remember that truncation of a signal in the
time domain corresponds to broadening of the spectrum by a sinc function in the frequency
domain. The power spectrum of a harmonic excitation pulse is a sinc2 function, and the ICR
orbital radius obtained by ions of certain ωc is proportional to the value of the power spectrum
at that frequency ωc. Consequently, also off-resonant ions are accelerated, but less than exactly
resonant ions. The FWHM of the main peak of the power spectrum is 1.7718/2T .

Since the ICR signal strength is proportional to the ICR orbital radius of ions, the ICR
signal induced after excitation by a short harmonic pulse varies very strongly with frequency:
off-resonant ions have smaller orbits than resonant ions. In order to measure the amount of
ions of different m/q values, it would be ideal if ions of a wide frequency range would have
the same orbital radius. This situation can be produced, if the excitation signal is tailored
in such a way, that its power spectrum is flat over a selected frequency band. The correct
excitation waveform can be found by first choosing the desired power spectrum, and then
applying Fourier transforms. This method is generally called the stored-waveform inverse
Fourier transform, SWIFT, excitation.
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The time-domain signal given by an ICR measurement is Fourier transformed, and a
frequency spectrum is obtained:

�
−1{I (t)} = N (ω). (8.22)

This spectrum reveals the cyclotron frequencies of the accelerated ions. All the properties of
Fourier transforms are available, and the signal and the spectrum may be processed by the
various methods described in Chapters 11–13. The mass spectrum of ions is obtained with the
help of Equation 8.7.

Figure 8.4 is an example of a high-resolution ICR measurement, made at the University
of Joensuu. The figure shows the mass number m/z of a protein molecule. m/z is the mass in
atomic mass units divided by the charge as the multiple of the elementary charge.

Figure 8.4: Electrospray ionization Fourier transform mass spectrum of photoactive yellow protein PYP
(10 µM in MeCN/H2O (1/1, v/v) + 1 % HAc). Inset shows the expansion of the isotopically resolved
pattern of the 15+ charge state. The goal of the measurement was to determine the molecular mass
of PYP at high accuracy. The mass of the protein was averaged over the observed charge states
and determined to be 14018.85 Da, that is in good agreement with the theoretical average molecular
mass 14018.78 Da of PYP containing a thioester-linked 4-hydroxycinnamyl chromophore. Courtesy of
Marjaana Nousiainen, Department of Chemistry, University of Joensuu.
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9.1 Fraunhofer and Fresnel diffraction

Fraunhofer diffraction takes place when a plane wave is distorted by an obstacle and the rays
which leave the obstacle in the same direction interfere. The dimensions of the obstacle must
be comparable to the wavelength of the wave. The incident rays are considered parallel, and
the rays received by the observer are also, effectively, parallel. The incident and the diffracted
beam are plane waves if the source and the screen are at an infinite distance from the obstacle.
Plane waves may also be achieved by lenses or mirrors. Figure 9.1 illustrates Fraunhofer
diffraction by a narrow slit.

Figure 9.1: Fraunhofer diffraction by a narrow slit. The spherical wave from the point source S0 is
turned into a plane wave by the collimator lens L1 of focal length f1. Behind the slit, the plane wave is
focused on the screen by the lens L2 of focal length f2.

Diffraction is called Fresnel diffraction if the conditions of Fraunhofer diffraction are not
satisfied. Fresnel diffraction takes place when a spherical wave is distorted by an obstacle
which has dimensions comparable to the wavelength of the wave. The incident wave is
spherical if it originates from a point source at a finite distance from the obstacle. Diffraction
is Fresnel diffraction also if the wave front between the obstacle and the screen consists of
spherical waves. This is the case if a particular observation point is at a finite distance from
the obstacle. Fresnel diffraction by a narrow slit is illustrated in Figure 9.2.

Mathematical calculation of Fresnel diffraction is complicated, because the intensity of
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Figure 9.2: Fresnel diffraction by a narrow slit. A spherical wave originates from the point source S0
and is observed at the observation point P.

spherical waves changes with distance, and this makes their treatment laborious. In the
following sections we shall concentrate on Fraunhofer diffraction, because the intensity of
plane waves stays constant, and calculations are simpler than for Fresnel diffraction. By
examining Fraunhofer diffraction, the principles of diffraction can be better clarified.

9.2 Diffraction through a narrow slit

An obstacle may be mathematically described by a transmission function. The transmission
function tells how large part of incident radiation can pass a point of an obstacle.

If the origin of the coordinates is fixed at the center of the slit, the transmission function
B(x) of a slit of width D can be written as

B(x) =
{

1, |x | ≤ D/2,

0, |x | > D/2,
(9.1)

which is a boxcar function. This function is shown in Figure 9.3.
Let us examine the situation in Figure 9.4, where a plane wave E hits a narrow slit

perpendicularly. Let us denote dE1 and dE2 two rays of infinitesimal width dx leaving the slit
at the angle θ with respect to the direction of incidence. θ is assumed to be very small, so that
dx ≈ dx cos θ . We shall choose dE1 to leave the slit at the center, and dE2 at a distance x
from the center. A ray dE of the width dx may be written as

dE = E0ei(k·r−ωt)dx = E0ei2πr/λe−iωt dx, (9.2)

where E0 is the amplitude of the plane wave per unit length. With the help of the transmission
function B(x), we can write

dE1 = B(0)E0ei2πr0/λe−iωt dx, and

dE2 = B(x)E0ei2π(r0+x sin θ)/λe−iωt dx .
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Figure 9.3: A slit of the width D (left), and its transmission function B(x) (right).

Figure 9.4: A slit, an incident plane wave E , and two rays dE1 and dE2 leaving the slit at different
places, propagating at the angle θ . (In the figure, θ > 0.)

All rays diffracting at the same angle θ interfere, and the total wave in that direction is

Eout =
∑

i

dEi = e−iωt

∞∫
−∞

B(x)E0ei2π(r0+x sin θ)/λ dx . (9.3)

The intensity Iout = E∗
out Eout. Since e−iωt eiωt = 1, we can neglect the time dependency. The

term E0ei2πr0/λ is constant, and can also be neglected. Consequently, the plane wave in the
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direction θ is of the form

Eout =
∞∫

−∞
B(x)ei2πνx sin θ dx . (9.4)

Let us change coordinates, and use the spatial coordinate

s = ν sin θ. (9.5)

The wave can then be written as

Eout(s) =
∞∫

−∞
B(x)ei2πsx dx . (9.6)

This is the Fourier transform of B(x). We can see, that the spatial amplitude distribution of
the plane wave leaving the obstacle is the Fourier transform of the transmission function of
the obstacle, �{B(x)}. This is a very useful result, which can be generalized also for other
obstacles than one narrow slit.

The Fourier transform of a boxcar function is a sinc function, and we obtain that the plane
wave leaving one narrow slit is

Eout(s) = �{B(x)} = D sinc(Dπs). (9.7)

Consequently, we can obtain the intensity as a function of the spatial coordinate s or the
direction θ :

Iout(s) = E∗
out(s)Eout(s) = D2 sinc2(Dπs) = I0

sin2
(

π D sin θ
λ

)
(

π D sin θ
λ

)2
. (9.8)

9.3 Diffraction through two slits

Let us examine two slits, both of the width D, which are situated at a distance d from each
other. The transmission function of two slits consists of two boxes. As shown in Figure 9.5, it
can be expressed as the convolution of a transmission function of one slit BD(x) and a function
describing the places of the slits Bd(x) = δ(x − d/2) + δ(x + d/2),

B(x) = BD(x) ∗ Bd(x). (9.9)

The plane wave leaving the slits at the spatial coordinate s is the Fourier transform of the
transmission function

Eout(s) = �{B(x)} = �{BD(x)}�{Bd(x)} = D sinc(π Ds) 2 cos

(
2π

d

2
s

)
. (9.10)
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Figure 9.5: Transmission function B(x) of two slits is obtained as the convolution the transmission
function BD(x) of one slit and the function Bd (x) = δ(x − d/2) + δ(x + d/2) describing the locations
of the slits.

The intensity of the wave is

Iout = I0
sin2 α

α2
cos2 β , (9.11)

where {
α = π Ds = π Dν sin θ,

β = πds = πdν sin θ.
(9.12)

Figure 9.6 illustrates the intensity on the screen behind two slits in the case D:d = 2:5.
Instead of using the transmission function of two slits, Equation 9.10 could also be ob-

tained using the transmission function of one slit and the shift theorem of the Fourier trans-
forms:

Eout(s) = �{BD(x + d/2)} + �{BD(x − d/2)}
= D sinc(π Ds)e−i2πsd/2 + D sinc(π Ds)ei2πsd/2

= 2D sinc(π Ds) cos(πds). (9.13)
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Figure 9.6: Intensity I = I0

(
sin α
α

)2
cos2 β of a plane wave diffracted by two slits, if the ratio of the

width D of the slits and the distance d of the slits is D:d = 2:5.

9.4 Transmission grating

A system of a large number of equally spaced parallel slits of equal width is called a trans-
mission grating. Figure 9.7 illustrates the transmission function B(x) of a grating with an odd
number of slits. If a grating consists of N slits of width D, equally spaced with the distance d,

Figure 9.7: The transmission function B(x) of a grating with an odd number N of slits. The width of
each slit is D and the distance of successive slits is d (d > D).
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then the transmission function of the grating is (see also Problem 3)

B(x) = �D(x)∗

�Nd(x)

∞∑
j=−∞

δ (x − jd)


 = �D(x)∗

[
�Nd(x)

�(x, d)

d

]
, (9.14)

where �D(x) is a boxcar function of width D, which is the transmission function of one slit,
and �Nd(x) is a boxcar function of width Nd, which determines the overall length of the
grating. The comb function

�(x, d) =
∞∑

j=−∞
δ
( x

d
− j

)
(1.13)=

∞∑
j=−∞

d δ (x − jd) (9.15)

determines the locations of the slits. These three functions are shown in Figure 9.8.

Figure 9.8: The transmission function of one slit �D(x), the boxcar function �Nd (x) which determines
the total length of a grating, and the comb function �(x, d)/d which determines the locations of the
slits.

The wave diffracted through a grating and propagating at the angle θ with respect to the
normal of the grating, which is also the direction of the incident beam, is shown in Figure 9.9.

In the same way as in the case of one slit or two slits, the amplitude distribution of the
diffracted wave is obtained as the Fourier transform of the transmission function, that is,
�{B(x)} = Eout(s), where the argument s = sin θ/λ = ν sin θ . It can be shown that the
Fourier transform of the comb function

�{�(x, d)} = d�(s, 1/d). (9.16)
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Figure 9.9: The direction of the incoming wave, which is the direction N normal to the plane of the
grating, and the direction of the diffracted wave, which makes an angle θ with respect to the normal N.

Consequently, we can obtain the amplitude distribution of the wave diffracted through a
grating:

Eout(s) = �{B(x)} = �{�D(x)} [�{�Nd(x)} ∗ �{�(x, d)/d}]
= D sinc(π Ds)[Nd sinc(π Nds) ∗�(s, 1/d)]

(1.13)= D sinc(π Ds)

[
N sinc(π Nds) ∗

∞∑
k=−∞

δ

(
s − k

d

)]

(3.11)= D sinc(π Ds)
∞∑

k=−∞
N sinc [π Nd(s − k/d)] . (9.17)

This distribution pattern is illustrated in Figure 9.10.
Once again, the intensity of the wave may be obtained from the equation

Iout(s) = E∗
out(s)Eout(s). (9.18)

We can see that the principal intensity maxima are obtained at the spatial coordinates

s = sin θ

λ
= k

d
. (9.19)

The condition of the intensity maxima can be written as

d sin θ = kλ, (9.20)

where k is an integer. The maxima with different values of k are the different diffraction
orders.
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Figure 9.10: The wave diffracted through a grating consisting of N slits of width D and distance d has

the amplitude distribution Eout(s) = D sinc(π Ds)
∞∑

k=−∞
N sinc [π Nd(s − k/d)] as the function of the

spatial coordinate s.

From Equations 9.17 and 9.18 we can calculate the intensity

Iout = I0 sinc2(π Ds)

{ ∞∑
k=−∞

sinc

[
π Nd

(
s − k

d

)]}2

= I0 sinc2(π Ds)
sin2(π Nds)

N 2 sin2(πds)
,

(9.21)

because, if N is an odd integer,

∞∑
k=−∞

sinc

[
π Nd

(
s − k

d

)]
= sin(π Nds)

N sin(πds)
, (9.22)

which can be verified through the serial expansion

1

sin x
=

∞∑
j=−∞

(−1) j

x − π j
. (9.23)

The intensity can also be written as

Iout = I0
sin2 α

α2

sin2 Nβ

N 2 sin2 β
, (9.24)

where {
α = π Dν sin θ,

β = πdν sin θ.
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The intensity distribution of the grating is, of course, valid also for an even integer N , which
is easy to show (see Problem 2).

In spectroscopy, it is common to use diffraction gratings instead of transmission gratings.
Diffraction gratings are based on interference of reflected beams, instead of transmitted, and
they give a larger intensity. The diffraction pattern of a diffraction grating is rather similar to
the diffraction pattern of the transmission grating.

Example 9.1: Two identical transmission gratings are placed behind an illuminated aperture,
as shown in Figure 9.11. The width of the slits in the gratings is a, the slits are positioned in
the intervals of 2a, and the entire number of slits which fit into the length of the illuminated
aperture is N . Initially, the slits of the two gratings lie on the top of each other so that the
transmission function of the system is the same as the transmission function of one grating.
Which diffraction orders are observed? The second grating is then moved perpendicularly to
the direction of the slits. How will the interference pattern change?

Figure 9.11: The gratings of Example 9.1.

Solution. Combination of the two gratings is one grating, consisting of N slits in the intervals
of 2a. Only the width of the slits of the combined system changes as the second grating is
moved. Initially, the width D of the slits of the combined system is a, but as the second grating
is moved a distance l the width decreases as D = a − l until D = 0 at l = a. After that, the
width of the slits grows again, and reaches the maximum D = a at l = 2a. In this way, D
changes periodically as the second grating is moved, with the period 2a.

The intensity of the diffracted beam is

Iout(s) = I0 sinc2(π Ds)
sin2(π Nds)

N 2 sin2(πds)
,

where d = 2a. The last part of the formula,

IG(s) = sin2(π Nds)

N 2 sin2(πds)
,

describes a rapidly changing interference pattern (compare this to Figure 9.10), which has the
intensity maxima, or the diffraction orders, at

sin(π2as) = 0, or s = 0, ± 1

2a
, ± 1

a
, ± 3

2a
, . . .

This part of the formula stays constant as the second grating is moved.
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The part

ID(s) = sinc2(π Ds)

describes a slowly changing diffraction pattern. The positions of its zeroes and maxima change
as the second grating is moved and the width of the slits of the combined system changes.

If l = 0, 2a, 4a, . . ., then D = a, and the zeroes of ID(s) lie at π Ds = kπ , k 	= 0, or
s = ± 1

a , ± 2
a , ± 3

a , . . . This means that even diffraction orders (excluding zeroth order) vanish.
If l grows (at l < a), then D diminishes, and the minima of ID(s) move farther. This means

that intensity is transferred from low orders of magnitude to higher orders of magnitude. At
the same time, the total intensity decreases, as the slits become narrower.

In the limit l → a, D → 0, the function ID(s) approaches a constant function, and all
orders of magnitude are seen as strong. Of course, the intensity of the diffraction pattern also
tends to zero.

9.5 Grating with only three orders

Let us consider if it is possible to make a grating which would give, instead of an infinite
number of diffraction orders, only exactly three orders −1, 0 and 1, as shown in Figure 9.12.
If such a grating would exist, the amplitude distribution of the diffracted wave would be
something like

Eout(s) = δ(s) + δ

(
s − 1

d

)
+ δ

(
s + 1

d

)
. (9.25)

A transmission function which would give this distribution would be

B(x) = �
−1{Eout(s)} = 1 + 2 cos(2πx/d), (9.26)

which is a function whose values vary between −1 and 3. However, a true transmission
function varies in the range [0, 1]. Thus, the amplitude distribution of Equation 9.25 is
impossible.

Figure 9.12: The amplitude distribution behind a grating which gives exactly three diffraction orders,
which are k = −1, 0, and 1.
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If we choose the amplitude distribution to be

Eout(s) = 1

2
δ(s) + 1

4
δ

(
s − 1

d

)
+ 1

4
δ

(
s + 1

d

)
, (9.27)

then the transmission function is

B(x) = 1

2
+ 1

2
cos

(
2πx

d

)
. (9.28)

This function is shown in Figure 9.13. We can see that it is a sensible transmission function.
A grating which has this transmission function gives a diffracted wave which has exactly three
diffraction orders. However, the central order has larger intensity than the other two orders.

In reality, however, a grating has a finite length l, and the truncation of the transmission
function causes that the true Eout(s) does not consist of Dirac’s delta functions, but is con-
volved with the function

l sin α

α
, α = π lν sin θ.

Figure 9.13: The function B(x) = 1
2 + 1

2 cos(2πx/d). A grating with this transmission function gives
exactly three diffraction orders.

9.6 Diffraction through a rectangular aperture

Let us next study a two-dimensional case, the diffraction pattern produced by a rectangular
aperture. We can set the coordinates in such a way that the aperture lies in the xy-plane
and the origin is in the center of the aperture. Let us denote X the width of the aperture in
the x-direction and Y the width of the aperture in the y-direction. This rectangular aperture
is illustrated in Figure 9.14. Let us denote n the normal vector of the aperture plane. We
shall examine a diffracted wave which propagates in the direction n′ which is determined by
angles θy and θx with respect to the direction n, as depicted in Figure 9.14.

The path difference of the rays leaving an aperture in the origin and at the point (x, y) is
x sin θx + y sin θy . We can write the wave diffracted by any two-dimensional aperture by using
the two-dimensional transmission function B(x, y) as

Eout(θx , θy) =
∞∫

−∞

∞∫
−∞

B(x, y)ei2πν(x sin θx +y sin θy) dx dy. (9.29)
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Figure 9.14: A rectangular aperture of size X × Y in the xy-plane. The plane normal to the direction n′
of the diffracted wave is obtained by first turning the plane of the aperture, of normal n, by angle θy
around x-axis and then turning this new plane by angle θx around the normal projection of y-axis on the
new plane. The path difference of the rays leaving the aperture in the origin and at the point (x, y) is
x sin θx + y sin θy . In the figure θx < 0 and θy < 0.

If we use the spatial coordinates{
s = ν sin θx ,

p = ν sin θy,
(9.30)

we can see that the diffracted wave is obtained by the two-dimensional Fourier transform

Eout(s, p) =
∞∫

−∞

∞∫
−∞

B(x, y)ei2π(sx+py) dx dy = �{B(x, y)}. (9.31)

If we can separate B(x, y) = B(x)B(y), we can write

Eout(s, p) =
∞∫

−∞
B(x)ei2πsx dx

∞∫
−∞

B(y)ei2πpy dy, (9.32)
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and, consequently,

Eout(s, p) = Eout(s)Eout(p) = �{B(x)}�{B(y)}. (9.33)

The transmission function of the rectangular aperture of size X × Y can be written as
B(x, y) = Bx (x)By(y), where Bx (x) is a boxcar function of length X and By(y) a boxcar
function of length Y , as shown in Figure 9.15. Consequently, we can find the amplitude
distribution of the wave diffracted by a rectangular aperture:

Eout(s, p) = Eout(s)Eout(p) = X sinc(Xπs)Y sinc(Yπp). (9.34)

The intensity of the diffracted wave is

Iout(s, p) = I0 sinc2(Xπs) sinc2(Yπp). (9.35)

If we return to the variables θx and θy , we obtain

Iout(θx , θy) = I0
sin2(Xπ sin θx/λ)

(Xπ sin θx/λ)2

sin2(Yπ sin θy/λ)

(Yπ sin θy/λ)2
. (9.36)

Let us examine a quadratic aperture of size D× D, and the special case where the direction
of the diffracted wave is such that θx = θy . We shall use new coordinates (z1, z2), which are
obtained by rotating the coordinates (x, y) by an angle −π/4, as shown in Figure 9.16. If
θx = θy , then, in the new coordinates, θz2 = 0, and θz1 ≈ √

2 θx . The spatial coordinate
q = ν sin θz1 ≈ ν

√
2 sin θx . We know that the Fourier transform of a triangle is �{�L (x)} =

L2 sinc2(πνL), where the triangle function

�L(x) =



L − |x |
L

, |x | ≤ L ,

0, |x | > L .

(9.37)

We notice that the transmission function of the quadratic aperture can be expressed in one
dimension with the help of the triangle function as B(z1) = 2�L (z1), where L = √

2D/2.

Figure 9.15: The x-component Bx (x) and the y-component By(y) of the transmission function
B(x, y) = Bx (x)By(y) of a rectangular aperture of size X × Y .
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Figure 9.16: A quadratic aperture of size X × Y = D × D, and the coordinates (z1, z2) obtained by
rotating the coordinates (x, y) by an angle −π/4.

Consequently, we can write the wave diffracted in the direction determined by the spatial
coordinate q as

Eout(q) = �{B(z1)} = D2 sinc2

(
πq

√
2

2
D

)
. (9.38)

The intensity of this wave is

Iout = I0 sinc4(π D sin θx/λ). (9.39)

This is consistent with our earlier result, Equation 9.35, when X = Y = D and θx = θy .
Figure 9.17 is a simulation of the diffraction pattern of a rectangular aperture.

Example 9.2: Determine the diffraction pattern of the symmetric transparent cross in Fig-
ure 9.18. (It is sufficient to find the wave Eout(s, p).)

Solution. Let us choose the origin of coordinates in the center of the cross. The transmission
function B(x) of the cross is B(x, y) = B1(x, y) + B2(x, y) − B3(x, y), where B1(x, y) is
the transmission function of the rectangular −L

2 ≤ x ≤ L
2 , −l

2 ≤ y ≤ l
2 , B2(x, y) is the

transmission function of the rectangular −l
2 ≤ x ≤ l

2 , −L
2 ≤ y ≤ L

2 , and B3(x, y) is the
transmission function of the rectangular −l

2 ≤ x ≤ l
2 , −l

2 ≤ y ≤ l
2 . Consequently,

Eout(s, p) = �{B(x, y)} = �{B1(x, y)} + �{B2(x, y)} − �{B3(x, y)}
= Ll sinc(π Ls) sinc(π lp) + lL sinc(π ls) sinc(π Lp)

−l2 sinc(π ls) sinc(π lp).
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Figure 9.17: A simulation of the diffraction pattern of a rectangular aperture. The diffraction orders
−3, . . . , 3 are shown in both directions x and y.

Figure 9.18: The transparent cross of Example 9.2.
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9.7 Diffraction through a circular aperture

If the aperture is circular, as shown in Figure 9.19, coordinates can always be chosen in
such a way that the phase difference of the rays leaving the aperture depends only on one
coordinate x , instead of two coordinates x and y. In the general two-dimensional case, as in
Figure 9.14, two angular variables θx and θy are needed to determine the angular deviation of
the diffracted wave, whereas in the case of a circular aperture only one angular variable θ is
sufficient. The coordinates are chosen so that θ = θx . The only necessary spatial coordinate
is then s = ν sin θ .

If the radius of the circle is R, then the integration in the direction y equals multiplication
by 2

√
R2 − x2. The one-dimensional transmission function is therefore

B(x) = 2
√

R2 − x2. (9.40)

The amplitude distribution of the diffracted wave is

Eout(s) =
∞∫

−∞
B(x)ei2πsx dx =

R∫
−R

2
√

R2 − x2 ei2πsx dx

u= x
R ⇒ du= dx

R=
1∫

−1

2R2
√

1 − u2 ei2π Rsu du = 4R2

1∫
0

√
1 − u2 cos(2π Rsu) du

= π R2 × 2
J1(2π Rs)

2π Rs
, (9.41)

Figure 9.19: Circular aperture of radius R in the xy-plane with normal vector n. The angle between n
and the propagation direction n′ of the diffracted wave is θ . The coordinates (x, y) have been chosen
in such a way that the plane normal to n′ is obtained by only rotating the aperture plane by the angle θ

around the y-axis. The phase shift of the rays leaving from an infinitesimally narrow strip dx in the
direction n′ is approximately constant.
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and the intensity of the wave is

Iout(s) = I0

[
2J1(2π Rs)

2π Rs

]2

= I0

[
2J1(2π R sin θ/λ)

2π R sin θ/λ

]2

. (9.42)

In these equations J1(x) is the Bessel function of the first order. Generally, the Bessel function
of order n is

Jn(x) = 1

π

π∫
0

cos(nθ − x sin θ) dθ, (9.43)

where n, the order, is an integer.

9.8 Diffraction through a lattice

A lattice of rectangular apertures is a two-dimensional diffraction obstacle, which consists
of two gratings crossing each other, as shown in Figure 9.20. If the size of each aperture of
the lattice is D × D, the number of the apertures is Nx × Ny , and the distance of successive
apertures in both directions x and y is d, then the transmission function of the lattice is (see
Equation 9.14)



B(x) = �D(x) ∗

�Nx d(x)

∞∑
j=−∞

δ (x − jd)


 ,

B(y) = �D(y) ∗

�Nyd(y)

∞∑
j=−∞

δ (y − jd)


 ,

(9.44)

where �D(x) and �D(y) are boxcar functions of length D, which are the transmission
functions of individual slits, �Nx d and �Nyd are boxcar functions of length Nx d and Nyd, re-
spectively, determining the size of the lattice in directions x and y, and Dirac’s delta functions
determine the positions of the apertures.

The amplitude distribution of the diffracted wave is, again, the two-dimensional Fourier
transform of B(x, y) = B(x)B(y), and the obtained intensity of the wave is (compare with
Equation 9.24)

Iout = I0 sinc2 αx

[
sin(Nxβx )

Nx sin βx

]2

sinc2 αy

[
sin(Nyβy)

Ny sin βy

]2

, (9.45)

where 


αx = π Dν sin θx ,

βx = πdν sin θx ,

αy = π Dν sin θy,

βy = πdν sin θy .
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Figure 9.20: A diffraction lattice of rectangular apertures. The size of each aperture is D × D, the
number of the apertures is Nx × Ny , and the distance of the apertures is d .

9.9 Lens and Fourier transform

A convex lens focuses parallel rays to one point in the focal plane. Rays of a certain direction
are focused to a certain corresponding point.

Let us examine a system, where a narrow slit has been placed in front of a convex lens,
as shown in Figure 9.21. If the slit is illuminated by a monochromatic plane wave, then the
amplitude of the wave leaving the slit in the direction determined by the spatial coordinate s is
the Fourier transform of the transmission function of the slit, �{B(x)}. Since the lens focuses
parallel rays to the same point, the amplitude distribution obtained on the screen in the focal
plane of the lens is

Eout(s) = �{B(x)} =
∞∫

−∞
B(x)ei2πsx dx, (9.46)

where

s = ν sin θ = sin θ

λ
≈ x ′

f λ
, (9.47)

x ′ being the coordinate of the point in the screen corresponding the spatial coordinate s. The
lens thus converts the function Eout from direction (spatial) domain to space domain. The
focal plane (x ′, y′) behind the lens, where the amplitude distribution is the Fourier transform
of the transmission function of the slit, is called the transform plane. The lens which converts
the Fourier transform from direction domain to the transform plane is called the transform
lens.
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Figure 9.21: A narrow slit is illuminated by a plane wave. Parallel rays leaving the slit are focused by a
convex lens to a screen in the focal plane of the lens. The transmission function of the slit is B(x) and
the amplitude distribution on the screen is Eout.

Figure 9.22 illustrates a two-dimensional system, which consists of a light source, a col-
limator which converts a spherical wave to a plane wave, a diffraction obstacle, an objective,
and a screen. The focal length of the objective is f . The screen is at the distance f behind
the objective. If B(x, y) is the transmission function of the obstacle, then the amplitude
distribution behind the obstacle in the direction domain is

Eout(s, p) =
∞∫

−∞

∞∫
−∞

B(x, y)ei2π(sx+py) dx dy = �{B(x, y)} = b(s, p). (9.48)

The lens converts the spatial coordinates (s, p) to the point (x ′, y′) on the screen:

s = x ′

λ f
, p = y′

λ f
. (9.49)

In other words, the lens in Figure 9.22 converts the Fourier transform of the transmission
function from direction domain to space domain to the focal plane. The intensity distribution
seen on the screen in the focal plane is the Fraunhofer diffraction pattern. The convex lens
does, of course, form an image of the obstacle somewhere, in some other plane than the
transform plane. The position of the image is given by the conventional lens equation. If the
distance of the obstacle and the lens is f , then the image is formed at infinity.

An image may be analogically and optically processed by the lens system in Figure 9.23.
The system contains two lenses L1 and L2. Their focal lengths are f1 and f2, respectively.
Lens L1 is placed at the distance f1 behind the obstacle. Lens L1 converts the Fourier trans-
form b(s, p) of the transmission function B(x, y) of the obstacle from the direction domain
to the x ′y′-plane, according to Equations 9.48 and 9.49. This distribution pattern b(s, p) is
then filtered in a desired way by a suitable filter in the x ′y′-plane. The second lens L2 is
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Figure 9.22: A system which takes the Fourier transform of the transmission function of an obstacle
in the plane (x, y), and converts the Fourier transform from direction domain to space domain to the
transform plane (x ′, y′), which is the focal plane of the objective. A diffraction pattern is obtained on
the screen in the transform plane. The focal length of the objective is f .

Figure 9.23: A lens system for image processing. The lens L1 converts the Fourier transform of the
transmission function B(x, y) of the obstacle to the x ′y′-plane, where this amplitude distribution may
be processed by a desired filter. The lens L2 forms a manipulated image of the obstacle in the x0 y0-
plane. The new image is given by an inverse Fourier transform of the manipulated amplitude distribution
leaving the transform plane. This image is inverted, and the directions of the coordinates (x0, y0) have
been chosen respectively.

used to form a new image. The new image is given by an inverse Fourier transform of the
manipulated amplitude distribution leaving the transform plane. Since the distance between
the obstacle and L1 was chosen to be f1, the final image is obtained in the focal plane (x0, y0)

of the second lens. The second lens may be called an imaging lens. The new image is now a
manipulated image.
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Figure 9.24 illustrates how a plane wave propagates in the direction θ with respect to the
optical axis, arrives in the first lens, is focused to a point in the common focal plane of the two
lenses, propagates to the second lens, and continues from the second lens as a plane wave in
the direction θ ′ with respect to the optical axis. The direction of the wave leaving the second
lens is

θ ′ ≈ − f1

f2
θ, (9.50)

where f1 is the focal length of L1 and f2 is the focal length of L2. The magnification of the
lens system is, according to basic geometrical optics, − f1/ f2.

Figure 9.24: Two successive lenses L1 and L2 of focal lengths f1 and f2, respectively. Prior to lens L1,
the transform �{B(x, y)} is in the direction domain. In the x ′y′-plane it is in the space domain and can
therefore be easily filtered.

If the plane (x ′, y′) is empty, an inverted image of B(x, y), magnified by − f1/ f2, is
obtained in the plane (x0, y0).

Figure 9.25 shows some binary filters, which may be placed in the x ′y′-plane. Binary
filters consist of fully transparent and fully opaque areas. Each of the filters in Figure 9.25 has
its own purpose of use. The filters remove rays with certain spatial coordinates; this process
is called spatial filtering.

Figure 9.26 shows the principle of a lens and a filter system which works as a low-pass
filter. The first lens converts the Fourier transform from direction domain to space domain, and
the second lens forms a new image. A beam whose intensity oscillates with high frequency
in the xy-plane has components with a large spatial coordinate s = ν sin θ and, consequently,
large coordinates in the x ′y′-plane. These components are removed in the x ′y′-plane by a
filter, which in this case is a circular aperture. Only low-frequency spectral components reach
the image plane.

In this section, we have discussed a method which can be used in filtering or smoothing
of an image. These same operations could be achieved also by mathematical treatment of a
signal or a spectrum. Mathematical filtering and smoothing will be discussed in Chapter 11.



9.9 Lens and Fourier transform 149

Figure 9.25: Four different binary filters.

Figure 9.26: The principle of low-pass filtering by lenses. Lens L1 converts the Fourier transform of
the original wave to the x ′y′-plane. The transformed intensity distribution has tails, which come from
the high-frequency spectral components. They are removed by a spatial low-pass filter. Only the central
maximum continues to the lens L2, which forms a new, smoothed image.

Example 9.3: The two-dimensional Dirac’s delta function can be defined as the product of
two one-dimensional Dirac’s delta functions: δ(x, y) = δ(x)δ(y).

(a) Show that for an arbitrary two-dimensional function f (x, y)

∞∫
−∞

∞∫
−∞

f (x, y)δ(x − a, y − b) dx dy = f (a, b).

(b) Show that the Fourier transform of the function 1
2 [δ(x+a, y+b)+δ(x−a, y−b)] is the

plane wave cos(2π � · v), where � = (s, p) and v = (a, b). (In the transform, xy-coordinates
change into sp-coordinates.)
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Solution. (a) A direct calculation gives
∞∫

−∞

∞∫
−∞

f (x, y)δ(x − a, y − b) dx dy =
∞∫

−∞


 ∞∫
−∞

f (x, y)δ(x − a) dx


 δ(y − b) dy

=
∞∫

−∞
f (a, y)δ(y − b) dy = f (a, b).

(b) Applying the result of (a), we obtain that

�{1

2
[δ(x + a, y + b) + δ(x − a, y − b)]}

=
∞∫

−∞

∞∫
−∞

1

2
ei2π(sx+py) δ(x + a, y + b) dxdy

+
∞∫

−∞

∞∫
−∞

1

2
ei2π(sx+py) δ(x − a, y − b) dxdy

= 1

2

[
e−i2π(sa+pb) + ei2π(sa+pb)

]
= cos [2π(sa + pb)] = cos(2π � · v).

Problems

1. To determine its thickness p, a thin wire is positioned in the middle of a slit of width L , in
the center of the slit, as shown in the following picture. Show that if the slit is illuminated
by a monochromatic plane wave of wavenumber ν, then the intensity in the direction θ

behind the slit is

I (θ) = I0(L − p)2 cos2
(

π
L + p

2
ν sin θ

)
sinc2

(
π

L − p

2
ν sin θ

)
.

Also calculate the direction at which the intensity of the interference pattern vanishes for
the first time, if p = 20.0 µm, L = 100.0 µm and λ = 632.8 nm.
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2. Deduce the Fraunhofer diffraction pattern of a grating from its transmission function
written in the form

B(x) = �D(x) ∗
(N−1)/2∑

j=−(N−1)/2

δ(x − jd),

where �D(x) =
{

1, |x | ≤ D/2,

0, |x | > D/2,
δ(x) is Dirac’s delta function and N is the number

of slits of the grating.

3. Show that convolution with the function d(t) = δ(t − t0) shifts a function the distance t0
“to the right”, i.e., g(t) ∗ d(t) = g(t − t0). Applying this result, compute the convolution
1

�t
g(t) ∗��t (t), where��t (t) =

∞∑
k=−∞

�t δ(t − k�t).

4. A transmission grating consists of groups of five slits, each slit of width a. Between two
slits of the group there is always an opaque area of the same width a. Every group of five
slits is followed by an opaque area of width 9a. These kinds of periods are repeated N
times. Find the Fraunhofer diffraction pattern of the grating.

Hint: The transmission function of the grating can be presented as

B(x) = �a(x) ∗
N−1∑
n=0

4∑
m=0

δ(x − n18a − m2a).

5. Show that the interference pattern Iout of a grating reduces to

(a) the interference pattern I0 sinc2(π Ds) cos2(πds) of two slits, if the value N = 2 is
inserted, and

(b) the interference pattern I0 sinc2(π Ds) of one slit, if the value N = 1 is inserted.

6. A grating, placed in the yz-plane, has a transmission function of the form

B(y) = 1

3
[2 + cos(2πy/d)] .

(a) What percentage of incident light intensity passes the grating straight forward, if the
incident plane wave propagates in the direction x . The width of the wave in the
y-direction is assumed to be infinite.

(b) Calculate the intensity distribution I (θ) of the diffracted wave as a function of the
direction θ of the diffracted wave with respect to the x-axis, if the incident light is
monochromatic (of wavelength λ), the plane wave hits the grating perpendicularly,
d = 1 µm, and the width of the wave in the y-direction is 10 mm.



152 9 Diffraction and Fourier transform

7. (a) Find the Fraunhofer diffraction pattern of a diffraction obstacle consisting of N slits
of width D and height h, at the distance d from each other, as shown in the following
picture.

(b) Check that insertion of d = D in the result of (a) gives the diffraction pattern of one
slit of width Nd and height h.

8. An opaque rectangular obstacle of width X and height Y is illuminated by a plane wave.
Find the Fraunhofer diffraction pattern.

9. A square aperture of the size 2R × 2R is covered by a concentric disc of radius R. Find
the Fraunhofer diffraction pattern.

10. Let G(�) = �{g(r)}, where � = (s, p) and r = (x, y). Show that if g(r) is a function of

circular symmetry, i.e., g(r) = gr (r) = gr

(√
x2 + y2

)
, then also its two-dimensional

Fourier transform is of circular symmetry, i.e., G(�) = Gρ(ρ) = Gρ

(√
s2 + p2

)
, and

Gρ(ρ) = 2π

∞∫
0

rgr (r)J0(2πρr) dr , i.e., Gρ(ρ) is the so called Hankel transform of

gr (r).

Hint: Bessel function J0(a) = 1

π

π∫
0

cos(a sin θ) dθ .

11. Find the Fraunhofer diffraction pattern of the triangular aperture shown in the following
picture.

12. A black and white slide picture contains an annoying raster pattern, which has a period d
in both x- and y-directions. The raster pattern shall be filtered away by a spatial filter. The
slide is illuminated by a monochromatic plane wave of wavenumber ν, and the diffraction
pattern is collected by a lens of focal length f and focused on the spatial filter. The filter
is a screen which has a square aperture of the size D × D. What is the largest value of D
at which the raster pattern will vanish? Calculate the largest value of D, if d = 0.20 mm,
f = 40.0 cm and λ = 1/ν = 633 nm.
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13. A laser beam has interference fringes which become increasingly dense the further they
are from the center of the beam towards the edges. The amplitude of the beam is of
the form A

[
1 + cos(Cr2)

]
, where A and C are constants. The laser beam is Fourier

transformed by a lens of focal length f into the plane x ′y′. Find the intensity distribution
in the x ′y′-plane. (The angles θx and θy are small.)

Hint: From mathematical tables,

∞∫
0

J0(βx) cos(αx2)x dx = 1

2α
sin

(
β2

4α

)
. See also

Problem 10 for Fourier transforming circularly symmetric functions.



10 Uncertainty principle

10.1 Equivalent width

The equivalent width �t of a real function h(t) is defined as

�t =

∞∫
−∞

h(t) dt

h(0)
, (10.1)

where the coordinates have been chosen so that the maximum value of the function is obtained
at t = 0: hmax = h(0). The equivalent width of a function is illustrated in Figure 10.1.

Let H( f ) be the inverse Fourier transform of h(t):

h(t) =
∞∫

−∞
H( f )ei2π f t d f = �{H( f )}, (10.2)

H( f ) =
∞∫

−∞
h(t)e−i2π f t dt = �

−1{h(t)}. (10.3)

Figure 10.1: The equivalent width �t =
∞∫

−∞
h(t) dt

/
h(0) of a function h(t). The area of the box of

width �t and height h(0) = hmax is equal to the area under the function h(t).

Fourier Transforms in Spectroscopy. J. Kauppinen, J. Partanen
Copyright © 2001 Wiley-VCH Verlag GmbH
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Clearly, the value of h(t) at t = 0 is

h(0) =
∞∫

−∞
H( f ) d f, (10.4)

and the value of H( f ) at f = 0 is

H(0) =
∞∫

−∞
h(t) dt. (10.5)

The equivalent width � f of H( f ) is

� f =

∞∫
−∞

H( f ) d f

H(0)
= h(0)

∞∫
−∞

h(t) dt

= 1

�t
= h(0)

H(0)
. (10.6)

Consequently, the distributions of a Fourier transform pair in the frequency domain and the
time domain obey

� f �t = 1. (10.7)

Let us consider plane waves e−ikx+iωt , whose angular frequency is ω, and wavenumber is
k = 2π/λ = 2πν, where λ is the wavelength. A wave packet at time t = 0 can be expressed
as

ψ(x) =
∞∫

−∞
A(k)eikx dk =

∞∫
−∞

A(ν)ei2πνx dν = �{A(ν)}, (10.8)

where the amplitude A(ν) = 2π A(k). We can see that ψ(x) is the Fourier transform of A(ν).
Consequently, we can apply Equation 10.7, which is valid for any Fourier transform pair h(t)
and H( f ). By substituting t by x and f by ν we obtain

�x �ν = 1. (10.9)

This is the uncertainty principle of a wave packet. It is impossible to make �x and �ν very
small at the same time. A wave packet which obeys these equations may be, for example, an
electromagnetic wave packet, and the uncertainty principle is valid, for example, for a photon.

In quantum mechanics a particle is described by a wave whose wavelength is de Broglie
wavelength

λ = h

p
. (10.10)
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In this equation, h is Planck’s constant, and p is the momentum of the particle p = mv, where
m is mass and v is velocity. In practice, a wave cannot be infinitely long, which means that
the wavelength of the particle is spread in the close vicinity of de Broglie wavelength. Let us
choose the coordinates in such a way that the particle moves in the x-direction. The particle
is represented by the wave packet

ψ(x) =
∞∫

−∞
A(ν)ei2πνx dν =

∞∫
−∞

φ(p)ei2πpx/h dp, (10.11)

where we have applied Equation 10.10, which gives

ν = 1/λ = p/h. (10.12)

The amplitude

φ(p) = A
( p

h

)
h

. (10.13)

We can now rewrite the uncertainty principle of Equation 10.9 as

�x �ν = �x
�p

h
= 1, (10.14)

or

�x �p = h. (10.15)

This means that if a wave packet is highly localized, then it is impossible to associate it with a
well-defined momentum. On the other hand, a wave packet whose momentum is well defined
must be spatially broad.

The energy of a particle is E = h f . If we substitute �E/h for � f in Equation 10.7, we
obtain the uncertainty principle of energy and time,

�E �t = h. (10.16)

In quantum mechanics, the wave packet ψ(x), which describes a particle, is given a
probability interpretation: if ψ(x) is normalized, then

|ψ(x)|2 dx = ψ∗(x)ψ(x) dx (10.17)

= probability to find the particle in the interval (x, x + dx).

In other words, the intensity |ψ(x)|2 of the wave is the probability density.
If an operator α̂ corresponds to a physically measurable quantity, the expectation value of

such a measurement, given the state ψ(x), is

〈α̂〉 =

∞∫
−∞

ψ∗(x)α̂ψ(x) dx

∞∫
−∞

|ψ(x)|2 dx

. (10.18)
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If the wave packet ψ is the eigenfunction of the operator α̂, that is, it satisfies the equation

α̂ψ(x) = aψ(x), (10.19)

then the average value of the operator in the state ψ is 〈α̂〉 = a.
Since quantum mechanics uses the probability interpretation, it is customary to express

the width of a quantity as the statistical standard deviation σ (see Section 10.3), instead of
using the equivalent width of the function.

In the following sections, we shall examine how statistical quantities are expressed with
Fourier transform, and what the uncertainty principle looks like, if statistical standard devia-
tions are used instead of equivalent widths.

Example 10.1: Determine the equivalent width of the Lorentz curve H( f ) = C

σ 2 + f 2
.

Solution. The Lorentz curve can be expressed as

H( f ) = C

σ 2 + f 2
= Cπ

σ

σ/π

σ 2 + f 2
.

Its Fourier transform is

h(t) = �{H( f )} = Cπ

σ
e−2πσ |t |.

The equivalent width is

� f =

∞∫
−∞

H( f ) d f

H(0)
= h(0)

H(0)
= Cπ/σ

C/σ 2
= πσ.

10.2 Moments of a function

Let us, once again, assume that h(t) and H( f ) are a Fourier transform pair. The derivative
theorem of Fourier transforms states that

H (k)( f ) = dk H( f )

d f k
=

∞∫
−∞

(−i2π t)kh(t)e−i2π f t dt. (10.20)

Applying this, we can express the moment of order k of a function h(t) as

∞∫
−∞

tkh(t) dt = H (k)(0)

(−i2π)k
. (10.21)

The zeroth moment of a function is the same as the area of the function:
∞∫

−∞
h(t) dt = H(0). (10.22)
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This means that the area of a function equals the value of its inverse Fourier transform at
f = 0. This is illustrated in Figure 10.2.

Figure 10.2: The area of a function h(t), which is shaded in the figure, is equal to H(0), which is the
value of H( f ) at f = 0.

The first moment of a function h(t) can be expressed with the help of the first deriva-
tive H (1)( f ) = dH( f )/d f of the corresponding spectrum:

∞∫
−∞

th(t) dt = H (1)(0)

−i2π
. (10.23)

The center of mass of a function is the weighted average, or the weighted mean value, of the
function. It can be written as

〈t〉h =

∞∫
−∞

th(t) dt

∞∫
−∞

h(t) dt

= H (1)(0)

−i2π H(0)
. (10.24)

The weighted average can be obtained from the zeroth and the first moments as

〈t〉 = 1. moment

0. moment
. (10.25)

Equation 10.24 is, actually, a special case of Equation 10.18, which gives the mean value
of operators in quantum mechanics.
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10.3 Second moment

The second moment of a function h(t) can be obtained from the second derivative H (2)( f ) =
d2 H( f )/d f 2 of the corresponding spectrum:

∞∫
−∞

t2h(t) dt = − H (2)(0)

4π2
. (10.26)

The second moment is, physically, the moment of inertia.
The mean square of a function is the ratio of the second moment and the zeroth moment:

〈
t2
〉
=

∞∫
−∞

t2h(t) dt

∞∫
−∞

h(t) dt

= − H (2)(0)

4π2 H(0)
. (10.27)

The square root of the mean square of a function,
√

〈t2〉, is the root mean square or the
rms value of the function.

The variance or the mean square deviation of a function h(t) is:

σ 2 =
〈
(t − 〈t〉)2

〉
=

∞∫
−∞

(t − 〈t〉)2h(t) dt

∞∫
−∞

h(t) dt

. (10.28)

On the other hand, the mean square deviation may be written as

σ 2 =
〈
t2
〉
− 2〈t〉〈t〉 + 〈t〉2 =

〈
t2
〉
− 〈t〉2, (10.29)

which is obtained by

σ 2 = − H (2)(0)

4π2 H(0)
+ 1

4π2

[
H (1)(0)

H(0)

]2

. (10.30)

The square root σ of the mean square deviation is called the standard deviation.
Let us next examine the uncertainty principle again, but use standard deviations instead of

equivalent widths.
The derivative theorem states that any Fourier transform pair h(t) and H( f ) obeys

�
−1

{
h(1)(t)

}
= �

−1
{

dh(t)

dt

}
= i2π f H( f ). (10.31)
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Applying this, and the power theorem, we obtain that

∞∫
−∞

h(1)(t)[h(1)(t)]∗ dt = 4π2

∞∫
−∞

f 2 H( f )H∗( f ) d f. (10.32)

The Cauchy–Schwarz inequality, well-known in mathematics, can be generalized to complex
functions:

4

∞∫
−∞

hh∗ dt

∞∫
−∞

gg∗ dt ≥
∣∣∣∣∣∣

∞∫
−∞

(h∗g + hg∗) dt

∣∣∣∣∣∣
2

. (10.33)

Integrating by parts, it is possible to show that∣∣∣∣∣∣
∞∫

−∞
th(1) dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∞∫
−∞

h dt

∣∣∣∣∣∣ . (10.34)

Applying these three results, let us examine the product of the mean square deviations σ 2
h

of h(x) and σ 2
H of H(ν). The quantum mechanical probability densities in the x- and ν-

domains can be written as h(x) = ψ(x)∗ψ(x) and H(ν) = A(ν)∗ A(ν), respectively. We
shall denote dψ(x)/dx = ψ(1). We shall assume that the averages 〈x〉 = 0 and 〈ν〉 = 0. We
can show the following inequality:

σ 2
h σ 2

H =

∞∫
−∞

x2ψψ∗ dx

∞∫
−∞

ν2 AA∗ dν

∞∫
−∞

ψψ∗ dx

∞∫
−∞

AA∗ dν

(10.32)=

∞∫
−∞

xψxψ∗ dx
1

4π2

∞∫
−∞

ψ(1)ψ(1)∗ dx


 ∞∫
−∞

ψψ∗ dx


2

(10.33)≥

∣∣∣∣∣∣
∞∫

−∞
(xψ∗ψ(1) + xψψ(1)∗) dx

∣∣∣∣∣∣
2

16π2


 ∞∫
−∞

ψψ∗ dx


2

=

∣∣∣∣∣∣
∞∫

−∞
x

d

dx
(ψψ∗) dt

∣∣∣∣∣∣
2

16π2


 ∞∫
−∞

ψψ∗ dx


2

(10.34)=

∣∣∣∣∣∣
∞∫

−∞
ψψ∗ dx

∣∣∣∣∣∣
2

16π2


 ∞∫
−∞

ψψ∗ dx


2

= 1

16π2
. (10.35)



162 10 Uncertainty principle

This means that if we use the statistical standard deviations to express the widths of the
functions, that is, �x = σh and �ν = σH , then the uncertainty principle of Equation 10.9
achieves the form

�x �ν ≥ 1

4π
. (10.36)

Consequently, if statistical standard deviations are used, Equation 10.15, which is the
uncertainty principle of the momentum and the place of a particle, is written as

�x �p ≥ h

4π
. (10.37)

The exact equivalence is obtained, if the function ψ(x) and its Fourier transform A(ν) are of
the same functional shape (for an example, see Problem 6).

Example 10.2: The probability density function of a random variable is

f (x) = Ae−α|x−x0|,

where A, α and x0 are constants (A is the normalization constant). Applying Fourier trans-
forms, determine the second moment or the mean value 〈x2〉.
Solution. We can rearrange the exponent of the function:

f (x) = Ae−α|x−x0| = Ae−2π α
2π

|x−x0|.

Applying the shift theorem and Table 1.1, we can find the inverse Fourier transform of f (x):

F(ν) = A
α

2π2

( α
2π

)2 + ν2
e−i2πx0ν = 2αA

e−i2πx0ν

α2 + 4π2ν2
.

Consequently,

F(0) = 2A

α
.

The first derivative of F(ν) is

F (1)(ν) = 2αA
−i2πx0(α

2 + 4π2ν2) − 8π2ν

(α2 + 4π2ν2)2
e−i2πx0ν

= −i4αAπx0

α2 + 4π2ν2
e−i2πx0ν − 16αAπ2ν

(α2 + 4π2ν2)2
e−i2πx0ν .

The second derivative of F(ν) is

F (2)(ν) = i4αAπx0
i2πx0(α

2 + 4π2ν2) + 8π2ν

(α2 + 4π2ν2)2
e−i2πx0ν

− 16αAπ2 (1 − i2πx0ν)(α2 + 4π2ν2)2 − 2(α2 + 4π2ν2)8π2ν2

(α2 + 4π2ν2)4
e−i2πx0ν.
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Consequently,

F (2)(0) = i4αAπx0
i2πx0α

2

α4
− 16αAπ2 α4

α8

= −8Aπ2x2
0

α
− 16Aπ2

α3
.

Now we can calculate the requested mean value, which is

〈x2〉 = −F (2)(0)

4π2 F(0)
= −α

8Aπ2
F (2)(0) = x2

0 + 2

α2
.

Problems

1. What is the equivalent width of the function sinc2(Cx)?

2. Show that W f ∗g = W f Wg

W f g
, where we denote Wh the equivalent width of a function h(x).

f (x) and g(x) are real and even functions.

3. Determine the kth derivative of the function sinc(Cx) at the point x = 0. k is an arbitrary,
non-negative integer.

4. The probability density of a random variable is

f (x) = 1√
2π σ

exp

[
− (x − µ)2

2σ 2

]
,

where x may have a value from −∞ to +∞. Applying Fourier transforms, compute the
mean value and the standard deviation of the variable.

Hint: �
{√

α/π e−αx2
}

= �
−1

{√
α/π e−αx2

}
= e− π2ν2

α . Also apply the shift theorem.

5. f and g are probability density functions. σ 2 is variance.

(a) Show that 〈x〉 f ∗g = 〈x〉 f + 〈x〉g .

(b) Show that σ 2
f ∗g = σ 2

f + σ 2
g .

6. The wave functions of a particle in the x-domain and in the ν-domain constitute a
Fourier transform pair. The wave function (or the probability amplitude) ψ(x) in the
x-domain is of Gaussian shape. Show that if the uncertainties �x and �ν are expressed
as the standard deviations of x and ν, respectively, then the optimal uncertainty relation

�x �p = h

4π
is obtained. The coordinates can be chosen in such a way that the mean

value 〈x〉 = 0.
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7. Determine the standard deviation in the cases where the probability density is, neglecting
the normalization constant,

(a) f (x) = e−|x |,

(b) f (x) = e−π2a2x2
.

8. Applying the formula of the kth moment of a function, determine the value of the integral
∞∫

0

xe−px sin(qx) dx , where p and q are real constants, and p > 0.

Hint: Use also the shift theorem.

9. The wave function of a particle in the (one-dimensional) p-domain is

φ(p) = A sinc2 [π(p − p0)/B] ,

where A, B and p0 are constants. Compute the probability that the particle is found in

the interval

[
− h

2B
,

h

2B

]
.



11 Processing of signal and spectrum

11.1 Interpolation

The process of finding estimates for the values of a function at new points between known
data by computational methods is called interpolation. Let us assume that we have measured
the data Hk of a spectrum H( f ). In interpolation, we try to find estimates for the values
of the spectrum H( f ) at new points between the known data Hk . We can, of course, apply
interpolation to other functions than spectra as well.

A fast and simple interpolation method is obtained by the use of Fourier transforms. In
what follows, we consider only the positive half of the signal with t > 0, and assume that
symmetric operations are always performed on the negative half. Note that when using FFT,
the negative half is aliased behind the positive half, so that adding new data after the known
ones actually means adding in the middle of the data sequence (see Problem 1). Firstly, the
Fourier transform of the spectrum is computed from the known values of the spectrum:

�{Hk} = h j , j = 0, 1, 2, . . . , N − 1.

This can be done by FFT. Secondly, this computed sequence of data h j , consisting of N data
in t-domain, is extended by adding a desired number M of new data behind the old N data.
The new M data are all given the value zero. This is called zero-padding. The new data
sequence h′

j consists of N + M data, in such a way that h′
j = h j , if 0 ≤ j ≤ N − 1, and

h′
j = 0, if N − 1 < j ≤ N + M − 1. Thirdly, inverse Fourier transform is computed from the

new, enlargened data sequence:

�
−1{h′

j } = H ′
k, k = 0, 1, 2, . . . , M + N − 1.

In this way, M + N data of the spectrum are obtained, instead of the original N .
If we wish to use FFT in the calculation of the Fourier transforms, then we must choose

N = 2m1 and M + N = 2m2 , where m1 and m2 are integers. Figure 11.1 shows an example
of a spectrum H( f ) of which N = 2m data Hk have been measured. Figure 11.2 shows the
calculated Fourier transform of the spectrum, �{Hk} = h j , as well as the new values zero,
which are added behind the calculated data for interpolation. In this figure, the number of the
new zero data is chosen to be equal to the number of the old calculated data, that is, M = N .
Figure 11.3 shows the interpolated spectrum �

−1{h′
j } = H ′

k , calculated from the extended
data sequence h′

j .
We can see that the original data remained unchanged in this interpolation. Interpolation

does not distort the original information. The new, additional data do not, however, contain
additional information of the true spectrum.

Fourier Transforms in Spectroscopy. J. Kauppinen, J. Partanen
Copyright © 2001 Wiley-VCH Verlag GmbH
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Figure 11.1: An example of a spectrum H( f ) of which N = 2m data Hk have been measured.

Figure 11.2: The calculated Fourier transform �{Hk} = h j of a measured spectrum Hk with N data,
and N new zero data, which are added behind the calculated data for interpolation.

The degree of interpolation is the higher the larger number of zero data we add behind the
calculated Fourier transform data. If we wish to achieve an interpolation degree K , which is
an integer ≥ 1, then we add (K − 1)N zero data behind the N calculated Fourier transform
data h j , and use the obtained K N data h′

j . The interpolated spectrum�
−1{h′

j } = H ′
k consists

of the original spectral data Hk and new K − 1 interpolated data between each two original
data at constant intervals, as shown in Figure 11.4.
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Figure 11.3: Interpolated spectrum H ′
k , which has been calculated by adding to the Fourier transform

�{Hk} of a measured spectrum Hk as many new zero data as the measured spectrum has measured data.
• is an original, measured datum, and × is a new, interpolated datum.

Figure 11.4: A piece of an interpolated spectrum with the degree of interpolation K = 8. • is an
original, measured datum, and × is a new, interpolated datum.

Generally, an interpolation H ′( f ) of a function H( f ) can be expressed in the f -domain
as a convolution integral

H ′( f ) = W ( f ) ∗ H( f ) =
∞∫

−∞
W (u)H( f − u) du =

∞∫
−∞

H(u)W ( f − u) du. (11.1)

W (u) tells the weight of the values H( f − u) in calculation of H ′( f ). In discrete form, an
interpolated spectral datum H ′

k+λ between two successive original spectral data Hk and Hk+1
separated by a distance � f can be written as

H ′
k+λ =

∞∑
j=−∞

Hj W [(k + λ)� f − j� f ] � f, 0 ≤ λ ≤ 1, (k + λ)� f = f.

(11.2)

The interpolation of a spectrum H( f ) by convolution with a function W ( f ) is illustrated in
Figure 11.5.
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Figure 11.5: Interpolation of spectrum H( f ) by convolution with W ( f ). The known data Hk
are separated by the distance � f . Values of interpolated data are given by the sum

∞∑
j=−∞

H j W [(k + λ)� f − j� f ] � f .

The interpolation method where zero data are added to the Fourier transform of the spec-
trum, in t-domain, can also be expressed as a convolution in f -domain. We can consider that
in this method the Fourier transform in t-domain is multiplied by the boxcar function

�2N�t (t) =
{

0, |t | > N�t,
1, |t | ≤ N�t.

(11.3)

The interval in the t-domain is

�t = 1

2N� f
,

where N is the number of original data (on the positive half of the spectrum), and � f
the sampling interval of the original spectrum. Multiplication in t-domain corresponds to
convolution in f -domain with

W ( f ) = �
−1{�2N�t (t)}. (11.4)
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Knowing the Fourier transform of a boxcar function, we can write

W ( f ) = 2N�t sinc(2π f N�t), (11.5)

or,

W ( f ) = 1

� f
sinc

(
π f

� f

)
. (11.6)

The interpolated spectrum is the convolution

H ′( f ) =
∞∫

−∞
H(u)W ( f − u) du ≈ � f

∞∑
j=−∞

Hj W ( f − j� f )

=
∞∑

j=−∞
Hj sinc

[
π

� f
( f − j� f )

]
.

At the point f = (k + λ)� f the interpolated spectral value is

H ′
k+λ ≈

∞∑
j=−∞

Hj sinc[π(k + λ − j)] . (11.7)

The interpolated spectral value which is obtained by adding zero data to the Fourier transform
in t-domain is equal to the value which is obtained by convolution of the original spectral data
with the sinc function of Equation 11.5. We can also notice that if λ = 0, then Equation 11.7
gives H ′

k = Hk . In practice, we cannot use Equation 11.7 as such, because the sum has an
infinite number of terms.

Interpolation by convolution with the sinc function of Equation 11.5 is illustrated in Fig-
ure 11.6. If λ = 0, then H ′

k = Hk , because sinc(π l) = 0, l = ±1, ±2, ±3, . . . If λ 	= 0,
then, generally, all the measured data Hj contribute to the interpolated spectral value H ′

k+λ,
because sinc [π(k + λ − j)] 	= 0 at any values j and k.

Finally note that zero-padding the signal is only necessary when using FFT, since it gives
the spectrum only at the predetermined points k� f = k/(2N�t). If we compute discrete
Fourier transform by other means, this restriction no longer exists, and once we have obtained
the signal data h j we may calculate the spectrum at any point f we wish from Equation 3.3.
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Figure 11.6: Interpolation H ′
k+λ ≈

∞∑
j=−∞

H j sinc [π(k + λ − j)] of the spectrum H( f ). If λ = 0,

then H ′
k = Hk , because sinc(πl) = 0 (l = ±1,±2,±3, . . .).

11.2 Mathematical filtering

A measured spectrum generally contains undesired components, noise, in addition to the
actual spectrum. The measured spectrum is H0( f ) + N ( f ), where H0( f ) is the actual
spectrum and N ( f ) is noise.

Band limited white noise consists of noise at all frequencies in a limited band, below a
maximum frequency fnoise. If the maximum frequency of the actual signal is fmax, we have{

H0( f ) = 0, | f | ≥ fmax,

N ( f ) = 0, | f | ≥ fnoise.
(11.8)

Figure 11.7 shows an example of a spectrum which contains band limited white noise. In this
example, the maximum frequency of the noise fnoise = 3 fmax.

The registered signal which gives the noisy spectrum is h0(t) + n(t), where h0(t) is the
actual signal and n(t) the noise. Figure 11.8 shows such a signal.
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Figure 11.7: A spectrum H0( f ) + N ( f ), consisting of the actual spectrum H0( f ) and noise N ( f ).
H0( f ) = 0 at | f | ≥ fmax, and the band limited white noise N ( f ) = 0 at | f | ≥ fnoise.

Figure 11.8: A registered signal h0(t)+n(t), where h0(t) is the actual signal and n(t) is the contribution
of noise in the signal. �t is the sampling interval.

If we know that the maximum frequency of the spectrum is fmax, then a natural choice
for the sampling interval would be �t = 1/(2 fmax), because then the spectrum would not be
aliased. However, if fnoise > fmax, then noise will be aliased, and the amplitude of noise in
the spectrum will grow. In the case of Figure 11.7, where fnoise = 3 fmax, the amplitude of
noise in the spectrum would grow

√
3-fold due to aliasing. Generally, if fnoise = n fmax, then

the sampling interval �t = 1/(2 fmax) increases the amplitude of the noise
√

n-fold.
The aliasing of noise can be avoided by using the shorter sampling interval

�t = 1

2 fnoise
, (11.9)
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but then the number of data increases. In the example of Figure 11.7, we would have �t =
1/(6 fmax), and the number of data would be increased 3-fold.

An alternative solution for the elimination of high-frequency noise is low-pass filtering.
Low-pass filtering is a special case of band-pass filtering, which filters away all other fre-
quencies of the spectrum than the desired bands containing information.

Let us examine a spectrum H( f ) = H0( f ) + N ( f ), which consists of an actual spec-
trum H0( f ) limited to a band fa < f < fb, and of band limited white noise N ( f ) at
frequencies f < fnoise. Figure 11.9 shows an example of such a spectrum. The filtered
spectrum of H( f ) is

H ′( f ) = G( f )H( f ), (11.10)

where the filter function, or the transfer function, G( f ) is

G( f ) =
{

1, fa ≤ | f | ≤ fb,

0, | f | < fa, or | f | > fb,
(11.11)

which is shown in Figure 11.10.
Taking the Fourier transforms of both sides of Equation 11.10 and applying the convolu-

tion theorem we obtain

�{H ′( f )} = �{G( f )} ∗ �{H( f )}, (11.12)

Figure 11.9: A spectrum H( f ) = H0( f ) + N ( f ), which consists of an actual spectrum H0( f ) limited
to a band fa < f < fb, and of band limited white noise N ( f ) at frequencies f < fnoise. The mirror
image H(− f ) = H( f ) is not shown in the figure.

Figure 11.10: The transfer function G( f ) for band-pass filtering of the spectrum shown in Figure 11.9.



11.2 Mathematical filtering 173

or

h′(t) = g(t) ∗ h(t), (11.13)

where h(t) = h0(t) + n(t) is the signal which corresponds to the unfiltered spectrum, h′(t) is
the signal which corresponds to the filtered spectrum, and g(t) = �{G( f )} is the smoothing
function, or the impulse response. h′(t) is called a smoothed signal. We can compute g(t)
using the shift theorem or the modulation theorem, and obtain

g(t) = 2( fb − fa) sinc [π( fb − fa)t] cos [π( fb + fa)t] . (11.14)

There are two alternative procedures how a noisy signal, h(t), can be smoothed after it has
been registered, in order to obtain a signal which corresponds to a filtered spectrum.

Procedure 1: Take the inverse Fourier transform of the signal h(t) which contains noise.
Multiply the inverse Fourier transform by the transfer function G( f ). Take
the Fourier transform of the product. The Fourier transform of the product is
the smoothed signal h′(t):

h′(t) = �{G( f )�−1{h(t)}︸ ︷︷ ︸
H( f )︸ ︷︷ ︸

H ′( f )

}. (11.15)

If this procedure is used, the filter is as sharp as possible. In this procedure,
however, aliasing of noise n(t) is problematic. In order to avoid aliasing of
noise, we would have to use a long signal portion and a large number of data.

Procedure 2: Use the Equation 11.13 and calculate the convolution

h′(t) = g(t) ∗ h(t) =
∞∫

−∞
g(u)h(t − u) du. (11.16)

In this procedure aliasing of noise n(t) is avoided, because it is filtered away
from the signal.

If Procedure 2 is applied, it is, in practice, necessary to truncate the convolution integral,
and the smoothed signal becomes

h′′(t) =
T0∫

−T0

g(u)h(t − u) du =
∞∫

−∞
�2T0(u)g(u)h(t − u) du =


�2T0(t)g(t)︸ ︷︷ ︸

g′(t)


 ∗ h(t),

(11.17)

where

�2T0(t) =
{

1, |t | ≤ T0,

0, |t | > T0.
(11.18)



174 11 Processing of signal and spectrum

The number of data points in this region must be odd, because otherwise the transfer function
will not be real. The smoothed signal becomes

H ′′( f ) = �
−1{h′′(t)} (11.17)= �

−1{�2T0(t)g(t)}H( f )

=
[
�

−1{�2T0(t)} ∗ G( f )
]

H( f ) = G ′( f )H( f ), (11.19)

and the true transfer function

G ′( f ) = �
−1{�2T0(t)} ∗ G( f ) = 2T0 sinc(2π f T0) ∗ G( f ) . (11.20)

We notice that the truncation of the convolution integral causes that the true transfer func-
tion G ′( f ) is the convolution of the optimal filter function G( f ) and a sinc function. This is
illustrated in Figure 11.11. The true filter function has Gibbs oscillations around f = fa and
f = fb.

The Gibbs oscillations of G ′( f ) may be reduced by using a weighted truncation function
instead of the boxcar function �2T0(t). The truncation function can be, for example, the
triangular function

�T0(t) =



0, |t | > T0,

1 − |t |
T0

, |t | ≤ T0.
(11.21)

We know that

�
−1{�T0(t)} = T0 sinc2(π f T0), (11.22)

and, consequently, the true transfer function of the spectrum, if triangular function is used in
truncation, is

G ′′( f ) = T0 sinc2(π f T0) ∗ G( f ). (11.23)

This transfer function is illustrated in Figure 11.12.

Figure 11.11: If the convolution integral in Equation 11.16 is truncated by a boxcar function, then the
true transfer function G′( f ) is the convolution of the optimal filter function G( f ) and a sinc function:
G′( f ) = 2T0 sinc(2π f T0) ∗ G( f ).
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Figure 11.12: If the convolution integral in Equation 11.16 is truncated by a triangular function, then the
true transfer function G′′( f ) is the convolution of the optimal filter function G( f ) and a sinc2 function:
G′′( f ) = T0 sinc2(π f T0) ∗ G( f ).

Table 11.1 summarizes the terminology of mathematical filtering.

A fast computer is able to calculate the smoothed signal from the convolution integral
in Equation 11.17 in almost real time, with only a short delay T0. This mathematical band-
pass filter has a strong sharpness of approximately 1/T0. The minimum frequency fa and
the maximum frequency fb of the band can be chosen almost arbitrarily. The filter may be
programmed to a low-pass filter or a high-pass filter. The phase of the transfer function G ′( f )

or G ′′( f ) is zero.

The convolution integral in Equation 11.16, which gives the smoothed signal, can be

Table 11.1: Summary of terminology.

H( f ) h(t)

spectral domain �
−1 signal domain

frequency domain ⇐ time domain
f -domain t-domain

filtering = � smoothing =
multiplying by filter function or ⇒ convolution with smoothing function or
transfer function G( f ) impulse response g(t)

G( f )H( f )

∞∫
−∞

g(u)h(t − u) du
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written in the discrete form as

h′
k =

∞∑
j=−∞

g j hk− j�t, (11.24)

where hk = h(k�t) and �t = 1/(2 fmax). The transfer function G( f ) can be calculated from
the discrete impulse response g j in the continuous form

G( f ) =
∞∑

j=−∞
g j e

−i2π f j�t�t =
∞∑

j=−∞
g j e

−iπ f j/ fmax�t, (11.25)

or in the discrete form, where f = k� f = k/(2T ), and T = N�t ,

Gk =
N∑

j=−N

g j e
−iπ jk/N �t. (11.26)

If calculations are performed by FFT, then N = 2m , where m is a positive integer.

Example 11.1: Averaging three successive signal data is a method which is sometimes applied
in order to smooth a signal. What is the transfer function (filter function) of this method?

Solution. We can apply the discrete convolution integral in Equation 11.24. The smoothed
signal is

h′
k = �t

∞∑
j=−∞

g j hk− j = hk−1 + hk + hk+1

3
.

We can see that the discrete impulse response is

g−1 = g0 = g1 = 1

3�t
.

Applying Equation 11.25, we can calculate the transfer function

G( f ) =
∞∑

j=−∞
g j e

−i2π f j�t�t = 1

3
ei2π f �t + 1

3
+ 1

3
e−i2π f �t

= 1

3
[1 + 2 cos(2π f �t)] = 1

3
[1 + 2 cos(π f/ fmax)]. (11.27)

This transfer function is shown in Figure 11.13. The transfer function is periodic with the
period 2 fmax = 1/�t . This transfer function seems very bad, and even reaches zero at some
frequency value. This smoothing method cannot be recommended.

It is possible to find this same transfer function by an alternative method: starting from a
continuous impulse response, and performing a discontinuity correction. We must, however,
be careful in finding the exactly right function. If the continuous impulse response which
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Figure 11.13: The transfer function G( f ) = [1 + 2 cos(π f/ fmax)] /3, which is obtained, if the signal
is smoothed by averaging three successive data.

corresponds to averaging three successive data is thought to be the boxcar function of length
2�t and height 1/(3�t), shown in Figure 11.14, we obtain the transfer function

G( f ) = �
−1{g(t)} = 2�t

3�t
sinc(2π f �t).

The transfer function corresponding to the discrete impulse response with sampling inter-
val �t is obtained from the transfer function corresponding to the continuous g(t) by using
Equation 3.14:

G�t ( f )
(3.14)=

∞∑
j=−∞

G

(
f − j

�t

)
= 2

3

∞∑
j=−∞

sinc

[
2π

(
f − j

�t

)
�t

]

	= 1

3
[1 + 2 cos(2π f �t)]. (11.28)

We did not obtain the right transfer function, since, for example, G�t ( fmax) = 0.
In order to obtain the correct transfer function, Equation 11.27, we must make a disconti-

nuity correction and use as the continuous impulse response the boxcar function of length 3�t

Figure 11.14: The wrong impulse response g(t), which does not correspond to the situation of
smoothing a signal by averaging three successive data with sampling interval �t .
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and height 1/(3�t), shown in Figure 11.15. With the help of Equation 9.22, we can calculate
the transfer function

G�t ( f ) = 3�t

3�t

∞∑
j=−∞

sinc

[
2π

(
f − j

�t

)
3

2
�t

]

= sin(3π f �t)

3 sin(π f �t)
= 1

3
[1 + 2 cos(2π f �t)] . (11.29)

We can see that now we have obtained the right G( f ) (Equation 11.27).

Figure 11.15: The correct impulse response g(t), which corresponds to the situation of smoothing a
signal by averaging three successive data with sampling interval �t .

Example 11.2: Smooth a signal by averaging N successive data, in such a way that each
datum is replaced by the average of the datum itself and N − 1 previous data. N is an odd
integer.

Solution. The smoothed signal is

h′
k = 1

N

N−1∑
j=0

hk− j .

The discrete impulse response is

g j = 1

N�t
, j = 0, 1, 2, . . . , N − 1,

and the transfer function is

G( f ) =
N−1∑
j=0

g j e
−i2π f j�t�t = 1

N

N−1∑
j=0

(e−i2π f �t ) j = 1

N

1 − e−i2π f �t N

1 − e−i2π f �t
, (11.30)

because the sum of the geometrical series is

N−1∑
n=0

xn = 1 − x N

1 − x
.
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The transfer function can also be written in the forms

G( f ) = 1

N

(1 − e−i2π f �t N )

(1 − e−i2π f �t )
= 1

N

e−iπ f �t N (eiπ f �t N − e−iπ f �t N )

e−iπ f �t (eiπ f �t − e−iπ f �t)

= 1

N

2i sin(π f �t N )

2i sin(π f �t)
e−i(N−1)π f �t . (11.31)

The same transfer function will be found, if we use the continuous impulse response
shown in Figure 11.16. The impulse response is a boxcar function of length N�t and height
1/(N�t), which has been shifted N−1

2 �t from the origin. The inverse Fourier transform of
the boxcar function around the origin is

�
−1{g(t + N − 1

2
�t)} = N�t sinc(π f N�t)/(N�t)

and, applying the shift theorem,

�
−1{g(t)} = sinc(π f N�t)e−i2π f (N−1)�t/2 = G( f ).

Consequently, the transfer function corresponding to the discrete impulse response with inter-
val �t is

G�t ( f ) =
∞∑

j=−∞
sinc

[
π N

(
f − j

�t

)
�t

]
e−i(N−1)π f �t .

Remembering Equation 9.22, we obtain

G�t ( f ) = 1

N

sin(Nπ f �t)

sin(π f �t)
e−i(N−1)π f �t . (11.32)

We can see that we obtained the same result as in Equation 11.31.

Figure 11.16: The continuous impulse response g(t), which corresponds to the situation of smoothing
a signal by averaging N successive data, chosen as in Example 11.2.
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11.3 Mathematical smoothing

A measured spectrum often consists of spectral lines, which have a certain line shape, and of
white noise. Such a spectrum is illustrated in Figure 11.17. Smoothing of a spectrum H( f )

is an operation where the spectrum is convolved with a smoothing function W ( f ) in order to
reduce the rapidly oscillating random noise of the data.

A spectrum with noise can be written as H( f ) = H0( f )+ N ( f ), where H0( f ) is the true
spectrum and N ( f ) is the white noise spectrum. The smoothing operation in the frequency
domain can be expressed as

H ′( f ) = W ( f ) ∗ H( f ), (11.33)

where H ′( f ) is the smoothed spectrum.
According to the convolution theorem, the Fourier transform of a convolution is a simple

multiplication. Consequently, convolution of a spectrum in the frequency domain is the same
as multiplication of a signal in the time domain:

�{H ′( f )} = �{W ( f )}�{H( f )} = A(t)h(t). (11.34)

A(t) = �{W ( f )} is the weight function, by which the original signal h(t) = �{H( f )} is
multiplied. This operation can be regarded as filtering of the signal. Smoothing of a spectrum
corresponds to filtering of the signal, in the same way as filtering of a spectrum corresponds
to smoothing of the signal.

Multiplication of the signal h(t) = �{H( f )} by the weight function A(t) = �{W ( f )} is
the same operation as is performed in the apodization method.

The aim of smoothing is to enhance the signal-to-noise ratio (S/N ) by reducing the noise
as much as possible, but distorting the true spectral line shape as little as possible.

The simplest way of smoothing a spectrum is the simple truncation of the signal. This
makes sense, because the ratio of true information and noise is generally the best near t = 0,
and the worst at large values of t . In truncation, the signal h(t) is multiplied by a boxcar

Figure 11.17: A spectrum which consists of spectral lines and white noise.
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function

�2Ti (t) =
{

1, |t | ≤ Ti ,

0, |t | > Ti .
(11.35)

Multiplication by a boxcar function is the weakest form of apodization, which does not modify
the signal or the noise in the retained portion of the signal.

An optimal smoothing is achieved, if the signal is truncated at such a point Ti beyond
which all information h(t) disappears under the noise n(t). This is illustrated in Figure 11.18.
At the point Ti the rms, or the root mean square, of the noise

√
n2(t) =

√√√√√ lim
T →∞

1

2T

T∫
−T

n2(t) dt (11.36)

is equal to the amplitude of the signal.
The signal of an optimally smoothed spectrum is

h′(t) = �2Ti (t)h(t), (11.37)

Figure 11.18: White noise spectrum N ( f ) in f -domain, white signal noise n(t) = �{N ( f )} in t-
domain, and the noise-corrupted signal h(t) = h0(t) + n(t). Beyond the point Ti all information h0(t)
disappears under the noise n(t).
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and, consequently, the optimally smoothed spectrum is

H ′( f ) = �
−1{�2Ti (t)h(t)} = �

−1{�2Ti (t)}∗H( f ) = 2Ti sinc(2π f Ti )∗H( f ). (11.38)

We can see that the smoothing function W ( f ) of the spectrum is a sinc function.

A conventional way to approximate the spectral line shape is to assume that it is Lorentzian,
shown in Figure 11.19. The spectrum is written as a sum of Lorentzian lines, that is,

H0( f ) =
∑

j

A j

[
σ j/π

σ 2
j + ( f − f j )2

+ σ j/π

σ 2
j + ( f + f j )2

]
= H0(− f ), (11.39)

where A j is the area of a line, f j is the position of a line, and the full width at half maximum,

Figure 11.19: A symmetric pair of Lorentzian spectral lines. The position of the lines is ∓ f j , the

area A j , and the FWHM 2σ j . The Fourier transform of the lines is 2A j e−2πσ j |t | cos(2π f j t).
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FWHM, of a line is 2σ j . The Fourier transform of a Lorentzian line is

�

{
A j

σ j/π

σ 2
j + ( f − f j )2

+ A j
σ j/π

σ 2
j + ( f + f j )2

}

= �

{
σ j/π

σ 2
j + f 2

}
A j

[
ei2π f j t + e−i2π f j t

]
= e−2πσ j |t | 2A j cos(2π f j t) = h0(t). (11.40)

We can see that the signal which corresponds to a Lorentzian spectral line is an exponentially
decaying cosine function. This is also illustrated in Figure 11.19.

If the spectral line shape is Lorentzian, then the optimal smoothing is obtained, if

2A j e
−2πσ j Ti =

√
n2(t). (11.41)

Figure 11.20 shows a simulation of a smoothing operation. In practice, it is impossible to

Figure 11.20: The spectrum H( f ), which has a signal-to-noise ratio of 20, can be smoothed to the
spectrum H ′( f ) by two alternative procedures. In the first procedure, the smoothed spectrum is obtained
by convolving the original spectrum by a smoothing function W ( f ), which in this simulation is a sinc
function. This is a laborious procedure. In the second procedure the spectrum is Fourier transformed
into the signal h(t) = �{H( f )}, and multiplied by a boxcar function �2Ti (t). The smoothed spectrum
is obtained as the inverse Fourier transform of the product �2Ti (t)h(t). The weak portions of the signals
are shown 30-fold magnified around Ti .
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carry out sinc smoothing in the frequency domain exactly, because the convolution has to be
truncated. The optimal smoothing is much easier to perform in the time domain. This is both
fast and accurate.

11.4 Distortion and (S/N ) enhancement in smoothing

Let us next consider, how much the spectral line shape is distorted by the smoothing operation.
The height of a general noise-free spectral line shape W0( f ) is given by

W0(0) =
∞∫

−∞
I0(t) dt, (11.42)

where I0(t) = �{W0( f )} is the noise-free signal corresponding to the noise-free spectral line
shape. In a real measurement, the signal cannot be infinite, but it is limited by a window
function A0(t). This is instrumental distortion. In other words, the spectral line shape is
smoothed by an intrinsic smoothing function �−1{A0(t)} of the recording system. Very often
the signal is merely truncated, and A0(t) is a boxcar function. The recorded line shape of a
noise-free line is

WR( f ) =
∞∫

−∞
A0(t)I0(t)e

−i2π f t dt. (11.43)

Its peak height is

WR(0) =
∞∫

−∞
A0(t)I0(t) dt. (11.44)

After smoothing by a smoothing function W ( f ) = �
−1{A(t)} the noise-free line shape is

W ′( f ) = �
−1{A(t)A0(t)I0(t)} =

∞∫
−∞

A(t)A0(t)I0(t)e
−i2π f t dt, (11.45)

and its peak height is

W ′(0) =
∞∫

−∞
A(t)A0(t)I0(t) dt. (11.46)

The relative distortion of the recorded line shape WR( f ) by smoothing can be defined as

�( f ) = W ′( f ) − WR( f )

WR(0)
, (11.47)
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and the maximum relative distortion is

�(0) = W ′(0) − WR(0)

WR(0)
=

∞∫
−∞

[A(t) − 1] A0(t)I0(t) dt

∞∫
−∞

A0(t)I0(t) dt

. (11.48)

It is also possible to determine the relative distortion δ1/2 of the FWHM of the line shape
in smoothing. It can be shown to be [5]

δ1/2 = FWHMsmoothed − FWHMrecorded

FWHMrecorded
≈ −WR(0) �(0)

W ′(0)
= −�(0)

�(0) + 1
. (11.49)

Another estimate of the efficiency of the smoothing operation is the enhancement of
the signal-to-noise ratio. Let us assume that the random white noise N ( f ) and its Fourier
transform, the noise signal n(t), both are even and real. According to the Parseval’s relation,
the noise power spectrum N 2( f ) and the noise power interferogram n2(t) are related by

∞∫
−∞

N 2( f ) d f =
∞∫

−∞
n2(t) dt. (11.50)

An experimental spectrum is, in practice, bandlimited between − fm and fm . Applying the
Parseval’s relation to the noise power spectrum N 2

R( f ) after smoothing by the intrinsic smooth-
ing function of the system, and taking into account that random white noise varies much more
rapidly than the window function A0(t), we obtain that

fm∫
− fm

N 2
R( f ) d f =

∞∫
−∞

A2
0(t)n

2(t) dt

≈ lim
T →∞

1

2T

T∫
−T

n2(t) dt

∞∫
−∞

A2
0(t) dt

= n2

∞∫
−∞

A2
0(t) dt. (11.51)

The rms value of the noise in the recorded spectrum is

√
N 2

R =

√√√√√ n2

2 fm

∞∫
−∞

A2
0(t) dt . (11.52)

Using the maximum value (Equation 11.44) of a line as the signal intensity, we obtain the
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signal-to-noise ratio of the recorded line

(S/N )R = WR(0)√
N 2

R

=

√
2 fm

∞∫
−∞

A0(t)I0(t) dt

√
n2

√
∞∫

−∞
A2

0(t) dt

. (11.53)

After smoothing by W ( f ) = �
−1{A(t)} the signal I0(t) has been multiplied by both

A0(t) and A(t), and analogously to Equation 11.53, the signal-to-noise ratio of the smoothed
spectrum is

(S/N )′ = W ′(0)√
N 2

A

=

√
2 fm

∞∫
−∞

A(t)A0(t)I0(t) dt

√
n2

√
∞∫

−∞
A(t)2 A2

0(t) dt

. (11.54)

Thus, the general formula of the signal-to-noise ratio enhancement Q resulting from the
smoothing operation is

Q = (S/N )′

(S/N )R
=

∞∫
−∞

A(t)A0(t)I0(t) dt

√
∞∫

−∞
A2

0(t) dt

∞∫
−∞

A0(t)I0(t) dt

√
∞∫

−∞
A2(t)A2

0(t) dt

=
W ′(0)

√
∞∫

−∞
A2

0(t) dt

WR(0)

√
∞∫

−∞
A2(t)A2

0(t) dt

. (11.55)

We can see that the efficiency of the smoothing operation depends on the smoothing func-
tions �−1{A(t)} and �−1{A0(t)}, as well as on the original line shape W0( f ) = �

−1{I0(t)}.
In Fourier transform spectroscopy, A0(t) is the apodization function which is applied when

computing the spectrum H( f ). Usually, it is the boxcar function

A0(t) =
{

0, |t | > T0,

1, |t | ≤ T0.
(11.56)

In this case, the signal-to-noise ratio enhancement of the smoothing operation is

Q0 =

T0∫
−T0

A(t)I0(t) dt
√

2T0

T0∫
−T0

I0(t) dt

√√√√ T0∫
−T0

A2(t) dt

. (11.57)
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Generally, if we wish to calculate �( f ), �(0), or δ1/2, we can approximate A0(t) by one
(and T0 by infinite), because I0(t) is damped much faster than A0(t). In the calculation of Q,
however, the shape of A0(t) is essential, because the noise n(t) is not damped, and A0(t)
determines how much the spectrum contains noise before smoothing.

Smoothing is often described by the smoothing parameter K , which is the ratio

K = FWHM of the original line

FWHM of the smoothing function
. (11.58)

Smoothing by truncation of the registered signal is characterized by the parameter K0, which
is the ratio

K0 = FWHM of the original line

FWHM of sinc function caused by truncation
. (11.59)

Example 11.3: A Lorentzian line is smoothed by a sinc function. What is the maximum
relative distortion, if we know the smoothing parameter K ?

Solution. The Lorentzian line is of the form W0( f ) = σ/π

σ 2 + f 2
. Its FWHM is 2σ . The signal

which corresponds to this line shape is I0(t) = �{W0( f )} = e−2πσ |t |.
The FWHM of a sinc-shaped smoothing function W ( f ) = 2T sinc(π2T f ) is approxi-

mately 1.2067/(2T ). We obtain

K ≈ 2σ

1.2067/(2T )
.

Consequently,

T ≈ 1.2067K

4σ
.

The Fourier transform of the sinc-shaped smoothing function is the boxcar function

A(t) =
{

1, |t | ≤ T,

0, |t | > T .

This is the apodization function.
Assuming that the recorded line shape is the same as the true line shape (there is no

truncation), the maximum relative distortion of the line shape is

�(0) = W0(0) ∗ W (0) − W0(0)

W0(0)
=

∞∫
−∞

[A(t) − 1] e−2πσ |t | dt

1/(πσ )

= −πσ2

∞∫
T

e−2πσ t dt = −2πσ

−2πσ
(0 − e−2πσ T ) = −e−2πσ T

≈ −e−1.2067π K/2.
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Example 11.4: A Lorentzian line is smoothed by a sinc function. The original signal is
registered in the interval [−T0, T0] (boxcar truncation). Show that the signal-to-noise ratio
enhancement of the smoothing is

Q0 ≈
√

K0/K [1 + �(0)] ,

where

K = FWHM of the original line

FWHM of the smoothing function
,

and

K0 = FWHM of the original line

FWHM of sinc function caused by truncation
.

�(0) is the maximum relative distortion of the line shape.

Solution. The line is, as in the previous example, W0( f ) = σ/π

σ 2 + f 2
. Its FWHM is 2σ . The

signal which corresponds to this line shape is I0 = �{W0( f )} = e−2πσ |t |.
The signal is truncated by the boxcar function

A0(t) =
{

1, |t | ≤ T0,

0, |t | > T0.

The FWHM of the intrinsic smoothing function �−1{A0(t)} = 2T0 sinc(π2T0 f ) is approxi-
mately 1.2067/(2T0). We obtain that

K0 ≈ 2σ

1.2067/(2T0)
,

where 2σ is the FWHM of a Lorentzian line. Consequently,

T0 ≈ 1.2067K0

4σ
.

As in the previous example, the smoothing function is W ( f ) = 2T sinc(π2T f ). Its
FWHM is approximately 1.2067/(2T ), and

T ≈ 1.2067K

4σ
.

The corresponding apodization function is, again,

A(t) =
{

1, |t | ≤ T,

0, |t | > T .

The truncation boxcar must be much longer than the apodization boxcar: T0 � T .
In order to be able to apply Equation 11.57, which gives the signal-to-noise ratio enhance-

ment of smoothing in the case of boxcar truncation, we need to find two quantities. Since
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A0(t) is a boxcar function, the maximum relative distortion of the line shape, Equation 11.48,
can be written as

�(0) =

T0∫
−T0

[A(t) − 1] I0(t) dt

T0∫
−T0

I0(t) dt

.

From this equation we get that

T0∫
−T0

A(t)I0(t) dt =
T0∫

−T0

I0(t) dt [�(0) + 1] .

For the boxcar apodization function, since T � T0,

T0∫
−T0

A2(t)dt =
T∫

−T

A2(t)dt = 2T ≈ 1.2067K

2σ
.

Inserting these in Equation 11.57, we find that

Q0 =

T0∫
−T0

A(t)I0(t) dt
√

2T0

T0∫
−T0

I0(t) dt

√√√√ T0∫
−T0

A2(t) dt

=

T0∫
−T0

I0(t) dt [�(0) + 1]
√

2T0

T0∫
−T0

I0(t) dt
√

2T

≈
√

1.2067K0/(2σ)√
1.2067K/(2σ)

[�(0) + 1] =
√

K0/K [�(0) + 1] .

Example 11.5: The height of a Lorentzian spectral line is H0(0) = S. The FWHM of the
line is 2σ . The signal was in the recording multiplied by a boxcar in the interval [−T0, T0].
The spectrum also contains white noise of standard deviation N , and the signal-to-noise ratio
is thus S/N . The line is smoothed by a sinc function W ( f ) = 2T sinc(π2T f ). As shown in
the previous example, the signal-to-noise ratio is in smoothing changed by the factor

Q0 ≈
√

K0/K [1 + �(0)] .

The change of the height of the line is �(0) ≈ −e−1.2067π K/2. (a) What is the standard
deviation N ′ of the noise after smoothing? (b) How should the apodization truncation point T
be chosen, if we want the standard deviation N ′ of the smoothed noise to be equal to the
distortion of the height of the line?

Solution. (a) The new signal-to-noise ratio after smoothing is

S′

N ′ = Q0
S

N
.
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On the other hand, the height of the line after smoothing is

S′ = [1 + �(0)] S.

Consequently,

N ′ = N

S

S′

Q0
≈

√
K/K0 N .

Remembering that K ≈ 2σ

1.2067/(2T )
and K0 ≈ 2σ

1.2067/(2T0)
, we can write the standard

deviation of noise after smoothing as

N ′ ≈
√

T/T0 N .

(b) We want that

N ′ ≈
√

T/T0 N = |�(0)S| = e−1.2067π K/2 S = e−2πσ T S.

Consequently,

e2πσ T =
√

T0/T
S

N
.

This yields

T = 1

2πσ
ln

(√
T0/T

S

N

)
.

The truncation point T should fulfill this condition.

11.5 Comparison of smoothing functions

In the previous section, in Examples 11.3. and 11.4, we noticed that smoothing of a spectrum
with a sinc function corresponds to apodization of the signal by a boxcar function. If a

Lorentzian line W0( f ) = σ/π

σ 2 + f 2
is smoothed with a sinc function, the maximum relative

distortion of the line shape is, as we found out,

�(0) ≈ −e−1.207 π K/2, (11.60)

where K is the smoothing parameter. The signal-to-noise ratio enhancement of sinc smoothing
was shown to be

Q0 ≈
√

K0/K
[
1 − e−1.207 π K/2

]
, (11.61)

where K0 is the smoothing parameter of the truncation of the registered signal.
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If a spectrum is smoothed with the sinc2 function W ( f ) = T sinc2(πT f ), then the
corresponding apodization function of the signal is the triangular function

A(t) = �T (t) =
{

1 − |t |
T

, |t | ≤ T,

0, |t | > T .
(11.62)

It can be shown (Problem 12) that in this case the maximum relative distortion of a Lorentzian
line is

�(0) ≈ 2

1.7718 π K

[
exp

(
−1.7718 π K

2

)
− 1

]
. (11.63)

Expressed using this maximum relative distortion, the signal-to-noise ratio enhancement of
the sinc2 smoothing of a Lorentzian line can be shown to be (Problem 15)

Q0 ≈
√

3 × 1.2067 K0

1.7718 K
[1 + �(0)] . (11.64)

If a spectrum is smoothed by a Lorentzian function W ( f ) = σ/(Kπ)

(σ/K )2 + f 2
, then the

corresponding signal is multiplied by the exponential apodization function

A( f ) = e−2πσ |t |/K . (11.65)

The maximum relative distortion of a Lorentzian line in smoothing with the Lorentzian func-
tion can be shown to be

�(0) = −1

K + 1
, (11.66)

and the signal-to-noise ratio enhancement can be shown to be

Q0 =
√

1.207 π K0

K

K

K + 1
. (11.67)

Figure 11.21 shows the maximum relative distortion −�(0) of a Lorentzian line as a
function of the smoothing parameter K in the cases where the line is smoothed with the
three smoothing functions discussed above. We can see that the maximum distortion depends
strongly on the choice of the smoothing function.

Figure 11.22 shows the behavior of the signal-to-noise ratio enhancement Q0 as a function
of K in the same three cases. Also Q0 depends on the smoothing function. Apodization
by an exponential function (smoothing by Lorentzian function) is a very strong form of
apodization, and it produces efficient suppression of noise, but, simultaneously, strongly
distorts the line shape. Boxcar apodization (smoothing by sinc function) is the weakest type of
apodization, where the retained portions of the signal and noise are not modified. Triangular
apodization (smoothing by sinc2 function) represents intermediate apodization between these
two extremes.
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Figure 11.21: Maximum relative distortion −�(0) as a function of the smoothing parameter K in the
cases where a Lorentzian spectrum is smoothed with a Lorentzian, sinc2, or sinc smoothing function.

Figure 11.22: Signal-to-noise ratio enhancement Q0 as a function of the smoothing parameter K in the
cases where a Lorentzian spectrum is smoothed with a Lorentzian, sinc2, or sinc smoothing function.
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Figure 11.23 illustrates the relative efficiency of the three smoothing functions in the case
where the maximum relative distortions �(0) are, in each case, −2 %. Theoretical values of
the signal-to-noise ratio enhancement, given by Equations 11.67, 11.64, and 11.61 are 2.73,
3.31, and 6.93 for the Lorentzian, sinc2, and sinc smoothing, respectively. In each case, the
maximum relative distortions are the same, by there are large differences in the signal-to-noise
ratio enhancement. If we wish to smooth with minimal distortions, the sinc smoothing gives
the best result. On the other hand, a more profound examination would reveal that the shape of
the relative distortion curve �( f ) would be the most attractive in Lorentzian smoothing [5].
Figure 11.23 also demonstrates how smoothing takes place simultaneously for all spectral
lines, in spite of their different positions and intensities.

Figure 11.23: Illustration of the efficiency of Lorentzian, sinc2, and sinc smoothing, applied to a
spectrum H( f ) consisting of three Lorentzian lines with K0 = 100. The K -values of the smoothing
functions were chosen in such a way that the maximum relative distortion �(0) is −2 % in each case.
The theoretical enhancement of the signal-to-noise ratio is 2.73, 3.31, and 6.93 for Lorentzian, sinc2 and
sinc smoothing, respectively. [5]

11.6 Elimination of a background

A spectrum H( f ) often contains a slowly varying background. In the signal h(t) the back-
ground information is near t = 0. Consequently, the background can be eliminated by
suppressing the beginning of the signal. This process is shown in Figure 11.24. If the FWHM
of the background is � f0, then the background disappears, if the values of the signal are
replaced by zero at |t | < 1.21/(2� f0).

The removal of part of the signal causes a distortion of spectral lines. The broadest spectral
lines experience the largest distortion. The maximum relative distortion of a spectral line
with FWHM � f , due to the shortening of the significant part of the signal, is approximately
� f/(� f0). The relative distortion of narrow spectral lines is smaller than this.
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Figure 11.24: The background of the spectrum H( f ) may be eliminated by first taking the Fourier
transform of the spectrum �{H( f )} = h(t), and then replacing the values of the beginning of
the signal h(t) by zero. The inverse Fourier transform of the manipulated signal h′(t) gives a
spectrum H ′( f ) without the background: �−1{h′(t)} = H ′( f ).

In practice, the distortion of the spectral lines due to the elimination of the background is
often smaller than the noise of the spectrum. However, in some cases the background of the
measured spectrum cannot be considered slowly varying. If the derivative of the background
is large at some points, then the background cannot be eliminated from the whole spectrum.
We may eliminate it part by part from those areas where it is slowly varying, and process the
areas with high background derivative in some other way.

11.7 Elimination of an interference pattern

A spectrum sometimes contains an interference pattern. It may be caused by, for example,
interference in filters or windows, which are frequently used in optical and IR instruments.

If a registered spectrum contains an interference pattern with a period F in f -domain, then
the corresponding signal has a peak at t = 1/F in t-domain. A practical way to eliminate
the interference pattern is to take the Fourier transform of the spectrum, remove the peak at
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t = 1/F by replacing the values of the signal around t = 1/F by the value zero, and return to
f -domain by inverse Fourier transform. This procedure is demonstrated in Figure 11.25. The
result of this mathematical procedure is a spectrum without the interference pattern.

Figure 11.25: Elimination of an interference pattern. The spectrum H( f ), which contains an
interference pattern of the period F , is Fourier transformed to the signal h(t). The interference peak
is removed by replacing the values of the signal around t = 1/F by zero. The new signal h′(t) is inverse
Fourier transformed. The resulting spectrum H ′( f ) contains no interference pattern.
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If the width of the interfered area in the spectrum is � f0, as illustrated in Figure 11.26, then
the width of the interference peak in the signal is approximately 1/� f0. This is approximately
the width of the signal area which should be removed. If the FWHM of the broadest true
spectral line is � f (see Figure 11.26), then its relative distortion due to the interference pattern
removal is � f/� f0. Narrower lines have smaller relative distortions.

To be precise, zeroing the bad samples does not eliminate background or interference
completely, since the true, undistorted samples are not exactly zeroes. An alternative approach
would be to regenerate the corrupted signal (in FTS, interferogram) samples by using linear
prediction, which is treated in detail in Chapter 13.

Figure 11.26: Determination of the relative distortion of a line in the removal of an interference pattern.
If the width of the interference area in the spectrum is � f0, and the width of the broadest spectral line
is � f , then the relative distortion of the broadest line is � f/(� f0).

11.8 Deconvolution

Deconvolution is the inverse operation of convolution. Let us assume that an observed spec-
trum is

HW ( f ) = W ( f ) ∗ H( f ) =
∞∫

−∞
W ( f ′)H( f − f ′) d f ′, (11.68)

where H( f ) is the real spectrum, and W ( f ) an instrumental function, due to the measurement
system. The true spectrum may be computed from the measured spectrum by deconvolution,
if the instrumental function is known.

Deconvolution in the frequency domain is a very difficult operation. An easier way is
to perform the operation in the time domain. If we take Fourier transform of both sides of
Equation 11.68, and apply the convolution theorem, we obtain

�{HW ( f )} = �{W ( f )}�{H( f )}. (11.69)
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Consequently, the original spectrum can be expressed as

H( f ) = �
−1{�{H( f )}} = �

−1
{
�{HW ( f )}
�{W ( f )}

}
, (11.70)

if �{W ( f )} 	= 0 at every value of t .
We can see that deconvolution is possible only if �{W ( f )} 	= 0 at every value of t . The

validity of this condition is, however, difficult to observe in f -domain! In practice, the noise
of the measured spectrum HW ( f ) will limit the use of deconvolution, since the noise will
“explode” at the points where �{W (t)} is close to zero. This can be avoided by smoothing
the spectrum. We can use the optimal smoothing, and multiply the signal in t-domain by a
boxcar function �2Ti (t) (Equation 11.35). As demonstrated in Figure 11.27, we can choose

Figure 11.27: The Fourier transform of the measured spectrum �{HW ( f )}, and the truncation boxcar
function �2Ti (t). Behind the point Ti the signal �{HW ( f )} is mostly noise. The lower curve is the
Fourier transform of the instrumental function �{W ( f )}.
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the point Ti in such a way that at this point the value of the signal ≈
√

n2(t), that is, behind
Ti the signal �{W ( f )} is smaller than noise.

The deconvolution of the smoothed measured spectrum H s
W ( f ) gives

H s( f ) = �
−1

{
�{H s

W ( f )}
�{W ( f )}

}
= �

−1
{

�2Ti (t)�{HW ( f )}
�{W ( f )}

}
, (11.71)

because

H s
W ( f ) = �

−1{�2Ti (t)} ∗ HW ( f ). (11.72)

From Equations 11.71 and 11.70 we obtain

H s( f ) = �
−1{�2Ti (t)} ∗ H( f ) = 2Ti sinc(π f Ti ) ∗ H( f ). (11.73)

If the Fourier transform of the instrumental function�{W ( f )} equals zero behind a certain
value of t (or at certain values of t), then the undistorted spectrum cannot be computed exactly
by deconvolution, or by any other means, even if there would be no noise. This is natural,
because in the area where �{W ( f )} = 0 the undistorted signal �{H( f )} is multiplied by
zero and is permanently lost.

Let us examine, as an example, a grating. The instrumental function or the convolving
function W (ν) of a grating, in the wavenumber domain, is (remember Equation 9.21)

W (ν) ∝ L sinc2(πνL), (11.74)

where

L = Nd sin θ. (11.75)

Here N is the number of slits in the grating, d is the distance of the slits, and θ is the
angle of the diffracted wave. If the true spectrum is H(ν), then the measured spectrum
is the convolution L sinc2(πνL) ∗ H(ν). The Fourier transform of this is the measured
signal �{L sinc2(πνL)}�{H(ν)}. On the other hand, we know that �{L sinc2(πνL)} is the
triangular function shown in Figure 11.28. Consequently, a grating loses information h(x) in
the area where |x | > Nd sin θ .

Generally, the aim of deconvolution is to compute the true spectrum H( f ) from the mea-
sured spectrum HW ( f ), that is, to correct the distortion caused by the instrumental function
W ( f ), which generally is known. This is usually successful, especially, if the instrumental
function is much narrower than the spectral lines. This situation is illustrated in Figure 11.29.
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Figure 11.28: The Fourier transform of the instrumental function �{L sinc2(πνL)}, and the true signal
h(x) = �{H(ν)}. The measured signal is the product of these two functions.

Figure 11.29: If the instrumental function W ( f ) has a small FWHM, then it distorts the spectral lines
of the true spectrum H( f ) only slightly, and the measured spectrum HW ( f ) ≈ H( f ).
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Problems

1. The discrete Fourier transformation of the vector f = ( f0, . . . , f2N−1) gives the trans-
form vector F = (F0, . . . , F2N−1). Let us assume that the number of data of f is
increased k-fold in the following way: 2k N − 2N − 1 zero components are added in
the middle of the original vector, behind the datum N , and the value of the datum N is
divided into two equal parts and given to datum N and datum 2k N − N of the new vector.
The new vector is

f ′ =
(

f0, . . . , fN−1,
1

2
fN , 0, . . . , 0,

1

2
fN , fN+1, . . . , f2N−1

)
.

Let us denote its Fourier transform vector F′.

Show that F ′
k j = Fj , j = 0, . . . , 2N − 1. (This means that the data of the vector F are

not changed, but k − 1 new data are interpolated in each data interval.)

2. The spectrum of a real signal under examination differs from zero only in the frequency
band [1000 Hz, 1600 Hz]. The spectrum does, however, contain noise up to the frequency
of 4000 Hz. This noise will be filtered by discrete convolution in the signal domain.

(a) How large can we let the convolution sampling interval �t be before high-frequency
noise will be aliased on the signal?

(b) The spectrum is calculated by Fourier transforming the convolved signal. What is the
largest value of �t which gives an undistorted spectrum? (The spectrum is allowed
to be mirrored.)

3. A noisy signal is smoothed by discrete convolution in such a way that a datum hk is
replaced by the average of the data hk−n, . . . , hk+n . Compute the corresponding transfer
function (filter function) by directly calculating the discrete Fourier transform of the
impulse response. The number of data of the transformation is M .

4. Derive the transfer function requested in the previous problem in an alternative way: first
calculate the continuous Fourier transform of a continuous impulse response and then
make a discontinuity correction, i.e., take into account aliasing due to sampling.

Hint: Use Eq. 9.22.

5. A signal is smoothed by discrete convolution in such a way that a smoothed datum is

h′
j = 1

2
h j−2 − 1

2
h j−1 + h j − 1

2
h j+1 + 1

2
h j+2.

Find the discrete transfer function (vector) G, by which the discrete Fourier transform
of h is multiplied. Outline the function G in the interval [−M/2, M/2], where M is the
number of data of G.
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6. A noisy signal vector s is smoothed by discrete convolution in such a way that a datum sk

is replaced by the datum

s ′
k = �t

∞∑
j=−∞

g j sk− j ,

where g j = F sinc2(π F j�t) and
1

2�t
< F <

1

�t
. Draw the corresponding transfer

function.

Hint: First determine the continuous Fourier transform of a continuous impulse response
and then make the discontinuity correction.

7. The discrete smoothing of a signal is made according to

h′
k = 1

3
hk + 1

3
hk−1 + 1

3
hk−2.

Determine the relative damping of the amplitude of a signal in this filter at the frequency
f = fmax/2 = 1/(4�t).

8. Samples of a signal are taken in the intervals �t in such a way that the highest frequency
which is not aliased is 1/(2�t) = fmax. We wish to filter by discrete convolution a
spectral band of width D which satisfies D/ fmax = p, 0 < p < 1 (band-pass filtering).
The convolution is truncated by a triangular weight function which goes to zero at the
points ±T0 = ±k�t and encloses m = 2k − 1 non-zero impulse response data.

Determine, as a function of p and the length of the convolution m, how large part of the

band, i.e.,
D − 2/T0

D
, is not seriously distorted (see the following picture).

9. A female radio journalist whose voice contains frequencies 4 kHz–10 kHz is making a
radio program about summer in Finland. The sounds of her surroundings contain hum of
wind in trees (0 Hz–1 kHz) and whine of mosquitoes (9 kHz–16 kHz).

(a) What is the maximum sampling interval �t which gives an undistorted signal?

(b) The annoying lisp of drunks (1 kHz–4 kHz) is filtered away by convolving the signal
in (almost) real time. Find the convolution function.

(c) The convolution integral is truncated at the points ±T0 (boxcar truncation). What is
the minimum number of data in the convolution in order to keep the width 1/T0 of
the slope of the filter function under the maximum of 100 Hz? Use the value of �t
obtained in (a).
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10. Show that if two Lorentz functions are convolved with each other, and the FWHMs of
these functions are 2σ1 and 2σ2, then the resulting function is a Lorentz function, and its
FWHM is 2σ1 + 2σ2.

11. A Lorentzian-shaped spectral line is smoothed by a sinc function. The FWHM of this
sinc function is half of the FWHM of the Lorentzian line. What is the maximum relative
distortion of the line?

12. Show that if a Lorentzian line is smoothed by a sinc2 function, then the maximum relative
distortion is (Equation 11.63)

�(0) ≈ 2

1.7718π K

[
exp

(
−1.7718π K

2

)
− 1

]
,

where K is the smoothing parameter.

Hint: The FWHM of the function T sinc2(πT f ) is approximately 1.7718/(2T ).

13. A Lorentzian-shaped spectral line is smoothed by a sinc2 function. The FWHM of this
sinc2 function is half of the FWHM of the Lorentzian line. What is the maximum relative
distortion of the line?

14. A Lorentzian-shaped spectral line is smoothed by a sinc function. The FWHM of this
sinc function is half of the FWHM of the Lorentzian line. What is the signal-to-noise ratio
enhancement in the smoothing, if the smoothing parameter of truncation is K0 = 20.

15. A Lorentzian line is smoothed by a sinc2 function. The original signal is registered in the
interval [−T0, T0] (boxcar truncation). Show that the signal-to-noise ratio enhancement
in the smoothing is (Equation 11.64)

Q0 ≈
√

3 × 1.2067K0

1.7718K
[1 + �(0)] ,

where K and K0 are the smoothing parameters, and �(0) is the maximum relative
distortion of the line shape.

Hint: The FWHM of the function T sinc2(πT f ) is approximately 1.7718/(2T ). The
FWHM of the function 2T0 sinc(π2T0 f ) is approximately 1.2067/(2T0). You can make
the approximation e−π K0/2 ≈ 0.

16. The height of a Lorentzian spectral line is H0(0) = S. The FWHM of the line is 2σ .
The signal was in the recording multiplied by a boxcar in the interval [−T0, T0]. The
spectrum also contains white noise of standard deviation N , so that the original signal-
to-noise ratio is S/N. The line is smoothed by the function W ( f ) = T sinc2(πT f ), so
that the signal-to-noise ratio is changed by the factor

Q0 ≈
√

3 × 1.2067K0

1.7718K
[1 + �(0)] ,
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where

�(0) ≈ 2

1.7718π K

[
exp

(
−1.7718π K

2

)
− 1

]

is the maximum relative distortion of the line shape.

(a) Find the standard deviation N ′ of noise after smoothing as a function of N , T , and
T0.

(b) Let us choose the point T in such a way that the standard deviation N ′ of the
smoothed noise is equal to the distortion of the height of the line. Show that in
this case T is determined by equation

1

1 − e−2πσ T
= (3T0)

1/2

2πσ T 3/2

S

N
.

17. A Lorentzian spectral line of FWHM 10 cm−1 was recorded by a Fourier transform
spectrometer. The resolution was 0.1 cm−1 and the signal-to-noise ratio was 500. What
would the signal-to-noise ratio have been if the resolution had been 1 cm−1? We assume
that the spectrometer has a point-like light source.

18. A spectrum which consists of Lorentzian spectral lines is smoothed. In recording, the
signal has been truncated by a boxcar in [−T0, T0]. The smoothing is made by truncating
the signal by a shorter boxcar [−T, T ]. The optimal truncation point Te where the
distortion of the height of a line is equal to the standard deviation of the smoothed noise
is, approximately, given by the equation (derived in Example 11.5)

Te ≈ 1

2πσ
ln

[√
T0

Te
(S/N )

]
,

where (S/N ) is the signal-to-noise ratio of the unsmoothed spectrum.

Show that if the signal-to-noise ratio fulfills the condition (S/N ) � √
T0/Te, then the

optimal smoothing gives the rule Kopt � log10(S/N ) (i.e., the value of the optimal
smoothing parameter is slightly larger than log10(S/N )).

19. In the measurement of a weak cosine wave, the standard deviation of white noise, or
the noise rms-value σt , is ten-fold compared to the amplitude of the cosine wave. How
many signal samples should we register in order to obtain a signal-to-noise ratio 10, i.e.,
in order that the spectral line of the signal would be ten times as high as the standard
deviation σ f of the noise in the spectral domain?

Hint: The noises in the signal and the spectrum are connected by the discrete Parseval’s
theorem �t

∑
j

|n j |2 = � f
∑

k

|Nk |2, or �tσ 2
t = � f σ 2

f .
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20. The spectrum of the following picture has a slowly changing background, which is of the
form 1+ cos(π f/ fmax). What is the minimum number of points which must be given the
value zero in the t-domain in order to remove the background?

21. A Fourier transform spectrometer has an optical filter of thickness d and refractive index
in the interesting wavenumber region n. Reflections at the surfaces of the filter produce
in the spectrum a cosine wave which has a maximum at those wavenumbers at which the
beam which has been reflected back and forth has constructive interference. At which
value of the optical path difference x does the signal contain a disturbance?

22. Show that the area of the convolution of two functions f and g is the product of the areas
of the functions f and g. Also show that the area of the deconvolution of two functions
is the ratio of the areas of the two functions.



12 Fourier self-deconvolution (FSD)

12.1 Principle of FSD

Narrowing a spectral line in the spectral domain is equivalent to stretching the corresponding
signal, the decaying wave, in the signal domain (see also Chapter 13). Making the decaying
wave decay more slowly in t-domain results in a narrower line in f -domain. This operation
can be done by dividing the wave by some smoothly decaying curve. In the spectral domain
this operation appears as deconvolution. In the same way as convolution always broadens
spectral lines, its inverse operation, deconvolution, always narrows the lines.

In Fourier self-deconvolution, FSD, the spectrum is deconvolved by the line shape of the
spectrum itself. The line shape is a line situated in the origin, and it has an area equal to
one. In FSD, the signal in t-domain is divided by the Fourier transform of the line shape
function. A return to f -domain by inverse Fourier transform gives a spectrum with narrower
spectral lines. The goal of FSD is to enhance the spectral resolution, that is, make the spectral
lines narrower, by mathematical means, in such a way that the frequency and the integrated
intensity of each line are preserved.

Let us assume that we recorded the line shape WR( f ). We remember that we can write
WR( f ) = WR( f ) ∗ δ( f ). If we carry out deconvolution of WR( f ) by the line shape WR( f )

itself, Equation 11.70 gives

�
−1

{
�{WR( f )}
�{WR( f )}

}
= �

−1{1} = δ( f ),

and the result is Dirac’s delta function. Total removal of the original line shape results in
infinitely narrow lines. In practice, however, we obtain a sinc function, which originates from
the inevitable truncation of the now non-decaying wave. In addition, the noise of the original
spectrum as well as the highly oscillating sinc line require smoothing. The spectrum should
be apodized by some window function in order to make the spectral lines smoother.

Let us assume that a registered spectrum HR( f ) consists of lines Ai WR( f − fi ):

HR( f ) =
∑

i

Ai WR( f − fi ), (12.1)

where Ai is the area (intensity), and fi the position of the i th line. WR( f ) is the line shape
function of the registered spectrum. The area of WR( f ) is equal to one. We are assuming that
all the lines have this same line shape. The Fourier self-deconvolved spectrum HFSD( f ) can
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then be expressed as

HFSD( f ) = �
−1

{
�{W ( f )}�{HR( f )}

�{WR( f )}
}

, (12.2)

where W ( f ) is the smoothing function, which is also the desired new line shape. The area
of W ( f ) is equal to one. In t-domain, �{W ( f )} is the window function by which the signal
is apodized in order to smooth the spectrum.

Since deconvolution is equivalent to division in t-domain, it is clearly a linear operation.
Deconvolving a linear combination of spectral lines of various heights simultaneously gives
the same result as deconvolving each line separately, providing that they have a common line
shape. The relative heights of the lines remain unchanged. Since the shift theorem states that
shifting a line in f -domain corresponds to multiplication by an exponential wave in t-domain,
the positions of the lines may also be arbitrary. FSD is able to narrow an overlapping set of an
unknown number of spectral lines without the need to know their heights and positions.

Since the operation is linear, we can examine only one spectral line. A registered spectrum
with one spectral line can be written as

HR( f ) = A0WR( f − f0). (12.3)

By applying the shift theorem, we obtain that the new spectrum after FSD is

HFSD( f ) = �
−1

{
�{W ( f )}�{A0WR( f − f0)}

�{WR( f )}
}

†= �
−1

{
�{W ( f )}A0�{WR( f )}ei2π f0t

�{WR( f )}

}
†= �

−1{�{A0W ( f − f0)}} = A0W ( f − f0). (12.4)

(† ⇔ shift theorem.) We can see that FSD is, indeed, the operation

A0WR( f − f0) → A0W ( f − f0). (12.5)

A registered spectral line of the shape WR( f ) is turned into a narrower spectral line of the
shape W ( f ), the area and the position remaining unchanged.

The principle of the FSD procedure is illustrated in Figure 12.1. The registered line is
deconvolved by its own line shape by division by �{WR( f )} in t-domain, resulting, in the
absence of truncation, in Dirac’s delta function A0δ( f − f0). This Dirac’s delta function is
smoothed by multiplication by �{W ( f )} in t-domain, resulting in the final line shape W ( f ).

We must, however, remember, that in practice the line shape WR( f ) of a registered spec-
trum is not the true original line shape, but the convolution of the instrumental function of the
measurement system Winst( f ) and the true line shape Wtrue( f ), as illustrated in Figure 12.2.

The main goal of FSD is to reduce the half-widths of the spectral lines. The efficiency of
this is given by the resolution enhancement factor

K = σR

σ
= FWHM of the registered line

FWHM of the smoothing function
. (12.6)
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Figure 12.1: The procedure of FSD. The registered spectral line A0WR( f − f0) is Fourier self-
deconvolved, resulting in Dirac’s delta peak A0δ( f − f0), and then smoothed, resulting in the final
line A0W ( f − f0).

Figure 12.2: The line shape WR( f ) of a registered high-resolution spectrum HR( f ) is the convolution
of the instrumental function of the measurement system Winst( f ) and the true line shape Wtrue( f ).

This may be simply called the K -value.
The theoretical resolution (see Equation 6.31) cannot be exceeded by FSD. This sets an

upper limit to the K -value. If the recorded signal is

HR( f ) = Winst( f ) ∗ Htrue( f ), (12.7)

where Winst( f ) is an instrumental function, then

K ≤ K0 = σR

σinst
= FWHM of the registered line

FWHM of the instrumental function
. (12.8)

Let us now examine examples of FSD. In the next two examples, as well as in a few other
examples later, FSD is applied to Fourier transform infrared spectroscopy. Conventionally,
the spectrum is then expressed as E(ν) as a function of the wavenumber ν

[
cm−1

]
, and

the signal is I (x) as a function of the optical path difference x [cm]. However, we shall, for
consistency, denote the spectrum and the signal with the more general symbols H( f ) and h(t),
respectively. The phenomena demonstrated in the examples are, after all, generally valid.
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Figure 12.3 shows two simulations of FSD, where the spectra contain no noise, and the
instrumental resolution is assumed to be infinite. Two simulated band contours HR( f ) are
each composed of two Lorentzian lines of half-widths 8 cm−1. In figure (a) the lines are
6 cm−1 apart and in figure (b) 2 cm−1 apart. The proportion of the intensities of the lines
is 0.75. FSD is applied to both spectra. The window function which is used in apodization
(smoothing) is

�{W ( f )} = [1 − (|t |/T )]2 , (12.9)

where T = 0.8 cm. The achieved spectral resolution enhancement is

K = σR

σ
= 8 cm−1

1.5 cm−1
= 5.3. (12.10)

We can see that in both cases the frequencies of the component lines are recovered by FSD.
Even in figure (b) the relative intensities of the lines are recovered.

Figure 12.3: A simulated example of FSD. The spectra contain no noise, and the instrumental resolution
is assumed to be infinite. Two simulated band contours HR( f ) are each composed of two Lorentzian
lines of half-widths 8 cm−1. In figure (a) the lines are 6 cm−1 apart and in figure (b) 2 cm−1 apart. The
proportion of the intensities of the lines is 0.75. FSD enhances the spectral resolution in both cases by a
factor of 5.3, and the new FWHM is 1.5 cm−1.

Figure 12.4(a) shows a real, experimental spectrum of liquid chlorobenzene. It is measured
with an instrumental resolution of σinst = 1.2 cm−1, and the signal-to-noise-ratio is 3000. The
FWHM of the spectral lines due to the Brownian motion of liquid is approximately 9.8 cm−1,
and the line shape is assumed to be Lorentzian. The spectrum is Fourier self-deconvolved,
using the smoothing function

W ( f ) = 16

√
π

2

T

(2π f T )5/2
J5/2(2π f T ), (12.11)
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where J5/2 is the Bessel function of the order 5/2. Figures 12.4(b) and (c) show the spectrum
after FSD, where we have chosen K = 3.6 and K = 4, respectively.

Figure 12.4: Fourier self-deconvolution of the C–H stretching region of the spectrum of liquid
chlorobenzene, consisting of 9.8 cm−1-wide Lorentzian lines. (a) Experimental spectrum with an
instrumental resolution of 1.2 cm−1 and a signal-to-noise ratio (S/N ) of about 3000. (b) Fourier self-
deconvolved spectrum with a Bessel-type smoothing function and K = 3.6. (c) Fourier self-deconvolved
spectrum with a Bessel-type smoothing function and K = 4.

Figure 12.5 demonstrates stepwise the procedure of FSD in f - and t-domains. The
behaviour of random white noise is shown separately. If we know the line shape WR( f )

of the recorded spectrum HR( f ), the only option which may be freely chosen in the FSD
procedure is the desired line shape W ( f ). The signal-to-noise ratio of the Fourier self-
deconvolved spectrum depends strongly on the shape and the half-width of W ( f ). This is
easy to understand by examining the behavior of noise in Figure 12.5. Consequently, the
correct choice of W ( f ) is very important in FSD.

Figure 12.6 shows eight different window functions A(t) = �{W ( f )} and the correspond-
ing smoothing functions (new line shapes) W ( f ), which may be used in FSD. Figure 12.6
also lists the FWHM of the new line shapes, as well as the relative magnitudes of the strongest
sidelobes.
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Figure 12.5: Illustration of the various steps (a) – (c) of the Fourier self-deconvolution (FSD) procedure.
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Figure 12.6: Various A(t) = �{W ( f )} functions A – H (left-hand column) and the corresponding line
shape functions W ( f ) (right-hand column) used in Fourier self-deconvolution. The half-width σ of the
line shape function and the relative magnitude s [%] of the strongest sidelobe of the line shape function
are listed in the right-hand column.
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12.2 Signal-to-noise ratio in FSD

The signal-to-noise ratio (S/N )FSD of the Fourier self-deconvolved spectrum HFSD( f ) largely
determines the usefulness of an FSD operation. The general formula of the enhancement, or
alternatively, decrease, of the signal-to-noise ratio by FSD is obtained from Equation 11.55
by replacing A(t) by A(t)/ [A0(t)I0(t)], where A(t) = �{W ( f )}, as in smoothing, until the
point T = T0, which defines the region where the signal is registered. This yields

Q = (S/N )FSD

(S/N )R
=

T0∫
−T0

A(t) dt

√
∞∫

−∞
A2

0(t) dt

∞∫
−∞

A0(t)I0(t) dt

√√√√ T0∫
−T0

A2(t)/I 2
0 (t) dt

. (12.12)

If A0(t) is the boxcar function

A0(t) =
{

0, |t | > T0,

1, |t | ≤ T0,
(12.13)

then the signal-to-noise ratio enhancement, or decrease, by FSD is

Q0 =

T0∫
−T0

A(t) dt
√

T0√
T0∫
0

A2(t)I −2
0 (t) dt

T0∫
−T0

I0(t) dt

. (12.14)

The value of Q0 depends on the choice of the shape of smoothing function and on the
choice of the resolution enhancement factor. Q0 is often written as a function of the resolution
enhancement factor K and the maximum K -value K0: Q0(K , K0).

Let us consider the Lorentzian line shape

W0( f ) = σ0/π

σ 2
0 + f 2

. (12.15)

Its Fourier transform is exponential:

I0(t) = �{W0( f )} = e−2πσ0|t |. (12.16)

Since the signal is truncated, the registered line shape is

WR( f ) = [2T0 sinc(2πT0 f )] ∗ σ0/π

σ 2
0 + f 2

. (12.17)

If we further assume that the instrumental resolution is much higher than the spectral reso-
lution, that is, σinst � σ0, then the registered spectral resolution σR ≈ σ0. In this case, the
maximum resolution enhancement factor is

K0 = σR

σinst
≈ 2σ0

σinst
= 2σ0

1.207/(2T0)
. (12.18)
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Then, Equation 12.14 gives, if T0 is large,

Q0(K , K0) ≈
π

√
1.207K0σ0

∞∫
0

A(t) dt√
∞∫
0

A2(t)e4πσ0t dt

. (12.19)

Figure 12.7 shows plots of computed Q0(K , K0) values as a function of K . In this exam-
ple, the line shape is Lorentzian and K0 = 5. The K -curves are shown for the eight different

Figure 12.7: Q0(K , 5) curves computed using Equation 12.19 and the eight functions A(x) shown in
Fig. 12.6. Upper part: A: boxcar, B: trapezoidal, C: triangular, D: triangular2. Lower part: E: Bessel,
F: cosine, G: sinc2, H: Gaussian. [6]
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smoothing functions of Figure 12.6. We can see that when K > 1, then Q0 decreases rapidly
and nonlinearly as a function of K . At high K -values, Q0 decreases nearly exponentially. The
higher the resolution enhancement is, the worse the signal-to-noise ratio becomes.

It is evident from Equation 12.19, that Q0(K , K0) at other values of K0 behaves in a
similar way to the curves at K0 = 5, because

Q0(K , K0) =
√

K0

5
Q0(K , 5). (12.20)

Figure 12.8 (a) illustrates the behavior of noise in Fourier self-deconvolved spectra at
various K -values. It is a simulation, where a Lorentzian line with K0 = 20 and (S/N ) ≈
2980 is Fourier self-deconvolved at seven different values of K . The shape of the window
function A(t) used in smoothing is sinc2. The increase of noise in the Fourier self-deconvolved
spectrum at higher K -values is evident. We can also see that at high K -values the noise is
no longer random, but components with periodicity of about 1/T , where T is the t-domain
point after which A(t) stays as zero, dominate. This is approximately the width of the
new line shape. This phenomenon can also be seen in Figure 12.8 (b), which shows the
noise interferograms obtained from the original noise interferogram n(t) by Fourier self-
deconvolution with the same parameters as in (a). The amplitude of the noise interferogram
has a maximum just below the point T , and this results in the periodicity of 1/T in the noise
spectrum.

The Q0 curves in Figure 12.7 show that the value of Q0 depends not only on the K -value,
but also on the shape of the chosen smoothing function W ( f ). If K is small, less than 2.5,
then the maximum factor by which the Q0 values by different smoothing functions differ is
about 2.2. At higher values of K , however, the differences are much larger. The higher K is,
the more critical is the choice of the smoothing function.

The effect of the shape of the smoothing function on the signal-to-noise ratio of the Fourier
self-deconvolved spectrum is illustrated also in Figure 12.9. The figure shows an experimental
IR spectrum HR( f ) of liquid chlorobenzene. The spectral lines are assumed to be Lorentzian
with σR ≈ 2σ0 = 9.8 cm−1. The spectrum is Fourier self-deconvolved using eight different
smoothing functions, at the same value K = 4. We can see that there is more than an order-
of-magnitude difference in (S/N )FSD between, for example, the triangular2 and the boxcar
weighting.

It is clear that, in practice, the maximum value of K is limited by the noise in the recorded
spectrum. If the signal-to-noise ratio of HR is (S/N ), then the maximal recommended nar-
rowing is given by

Kmax ≈ log10(S/N ) . (12.21)

By examining the Fourier self-deconvolved spectra, we can find that some of the spectra
contain strong sidelobes. The most dominant sidelobes are obtained, if the weight function is
the boxcar function. At high K -values, the enhancement, or decrease, of the signal-to-noise
ratio is roughly proportional to the magnitude |s| of the strongest sidelobe of the smoothing
function W ( f ):

Q0

|s| ≈ constant. (12.22)
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Figure 12.8: (a) A Lorentzian line WR( f ) (top) with random noise, with (S/N ) ≈ 2980 and K0 = 20,
and Fourier self-deconvolved spectra at K = 1.0, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.25, obtained using
the sinc2 function as A(t). (b) The noise interferogram n(t) (top) and the noise interferograms
n(t) = �(t) sinc2(π t/T ) exp(πσR|t |)n(t) after Fourier self-deconvolution at same parameters as in (a).
The source of the periodicity of about 1/T of the noise in (a) is clear from the corresponding noise
interferograms (b). [6]
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Figure 12.9: Comparison of the effect of the shape of the weighting function A(t) on the (S/N )FSD
of a Fourier self-deconvolved spectrum. HR( f ) is an experimentally registered IR spectrum of liquid
chlorobenzene in the C–H stretching region. The spectral lines are assumed to be Lorentzian, with
σR ≈ 2σ0 = 9.8 cm−1. K = 4 is chosen. The Fourier self-deconvolved spectra are computed using
eight different weight functions A(t) of Fig. 12.6. [6]

An optimal situation is achieved, when the sidelobe and the noise are of similar magnitude:

(S/N )FSD ≈ 1/|s|. (12.23)

Example 12.1: A spectrum consists of spectral lines which are all of the same Lorentzian
shape

WR( f ) = σ/π

σ 2 + f 2
.

By which function should we multiply the signal, if we wish the new line shape to be a sinc
function, and the spectral resolution enhancement factor to be K = 2? The areas of the lines
should remain unchanged.
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Solution. The signal amplitude which gives the Lorentzian line shape is

IR(t) = �{WR( f )} = e−2πσ |t |.

The desired new line shape is

W ( f ) = 2T sinc(π2T f ).

The corresponding signal amplitude is the boxcar

A(t) = �2T (t) =
{

0, |t | > T,

1, |t | ≤ T .

In order to obtain sinc-shaped lines, we must multiply the signal by the function

A(t)/IR(t) = �2T (t) e2πσ |t |.

Since the value of this function in the origin is one, it retains the line areas, as required. The
truncation point T is determined by the condition

K = FWHM of the registered line

FWHM of the smoothing function
≈ 2σ

1.2067/2T
= 2.

This yields

T ≈ 1.2067

2σ
.

12.3 Underdeconvolution and overdeconvolution

In Fourier self-deconvolution, the line shape of the spectrum is assumed to be known. If the
assumed line shape is not correct, then the final line shape of the Fourier self-deconvolved
spectrum differs from the desired line shape W ( f ). However, even then the resolution is
enhanced, and the frequency and the area of a line are not distorted.

It may sometimes be difficult to estimate the half-width of the spectral lines from the
observed spectrum. The half-width of a single line is easy to measure, but the half-width
of several overlapping lines may be impossible to measure. In addition, the half-widths of
different lines often differ from each other. If the half-width of a line is underestimated, then
the Fourier self-deconvolved spectrum has a line shape close to the original line shape, and
the spectral resolution is lower than predicted. This situation is called underdeconvolution.
If the half-width of a line is overestimated, then the spectral resolution after Fourier self-
deconvolvolution may be slightly higher than expected, but the Fourier self-deconvolved line
has strong negative sidelobes. This situation is called overdeconvolution.

Figure 12.10 shows simulated examples of underdeconvolution and overdeconvolution.
Figure 12.10 (a) shows two FTS spectra with Lorentzian lines. In Figure 12.10 (b), (c), and (d)
these spectra have been Fourier self-deconvolved, using a triangular squared weight function.
In 12.10 (b) the half-width of the lines is 25 % underestimated, and overlapping lines are not
adequately resolved. In 12.10 (c) the correct half-width is used. In 12.10 (d) the half-width is
25 % overestimated, and the lines have strong sidelobes.
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Figure 12.10: The effects of incorrect half-width in Fourier self-deconvolution (FSD). (a) Simulated
spectra, consisting of a single Lorentzian line (left), and of two overlapping Lorentzian lines (right), all
of the half-width σR = 8 cm−1. These spectra are Fourier self-deconvolved, using a triangular2 weight
function with T = 0.8 cm. In (b) the assumed half-width of the lines σ is 25 % too small, in (c) it is
correct, and in (d) it is 25 % too large.

12.4 Band separation

Band separation is an application where the usefulness of Fourier self-deconvolution is very
obvious. From the Fourier self-deconvolved spectrum we can easily separate a single line,
without touching other lines. The desired line may be removed, even if the lines in the original
spectrum would overlap. The frequency and the area of the line are preserved. After separation
of the desired spectral band, we can restore the line shape information by making an inverse
Fourier self-deconvolution. The result is the original line shape, even if the assumed line shape
in FSD would not be correct.

Figure 12.11 shows an FTS simulation which illustrates the band separation procedure.
The original spectrum consists of two overlapping Lorentzian lines at the wavenumbers f1
and f2, with σR = 8 cm−1. The weight function used in FSD is triangular2, with T = 0.8 cm.
The original spectrum is first Fourier self-deconvolved by multiplying the corresponding inter-
ferogram in the signal domain by (1−|t |/T )2eσRπ |t | and then transforming back to the spectral
domain. After that, the line at f2 is removed. The remaining spectrum, consisting of the line at
f1, is convolved by multiplying the corresponding interferogram by 1/

[
(1 − |t |/T )2eσRπ |t |]

and then transforming back to the spectral domain. The result is the original spectrum with
only one Lorentzian line.
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Figure 12.11: Illustration of the band separation procedure. The original spectrum HR( f ) consists of
two Lorentzian lines of the half-width 8 cm−1 at the distance 6 cm−1 from each other. One of the lines
is removed from the Fourier self-deconvolved spectrum HFSD( f ). The remaining spectrum is Fourier
self-deconvolved back to the spectrum H ′

R( f ), which differs from the original, because it now consists
of only one Lorentzian line.

12.5 Fourier complex self-deconvolution

Fourier complex self-deconvolution, FCSD, is Fourier self-deconvolution where the registered
line shape function WR( f ) is asymmetric. In this case, the Fourier transform of the line shape
function is complex:

�{WR( f )} = Re(t) + i Im(t), (12.24)

where Re(t) and Im(t) are the real and imaginary parts of �{WR( f )}, respectively. The
desired line shape W ( f ) after FCSD is, however, symmetric. The change of the line shape by
FCSD is illustrated in Figure 12.12.

Using Equation 12.24, Equation 12.2 of FSD can be written as

HFCSD( f ) = �
−1

{
[Re(t) − i Im(t)]�{W ( f )}�{HR( f )}

[Re(t)]2 + [Im(t)]2

}
, (12.25)

where HFCSD is the spectrum after FCSD. This spectrum is still real, even though �{WR} is
complex.

FCSD is used instead of conventional FSD if the line shape is asymmetric and complicated.
The goal is to make the line shape symmetric, and also to enhance spectral resolution. The
decrease of the signal-to-noise ratio (S/N )FCSD as a function of the resolution enhancement
factor K is in FCSD quite similar to conventional FSD, only somewhat faster.
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Figure 12.12: The principle of FCSD: an asymmetric line shape WR( f ) is changed to a new, symmetric
line shape W ( f ).

Figure 12.13 shows a simulated example of FCSD. The original spectrum HR( f ) consists
of two overlapping lines and one singlet line, all of the same asymmetric line shape WR( f ).
The spectrum also contains some noise. After FCSD, all three lines are clearly resolved, and
have a symmetric line shape W ( f ).

Figure 12.13: Simulated example of FCSD. The original spectrum HR( f ) consists of two overlapping
lines and one singlet line, all of the same asymmetric line shape WR( f ). The spectrum also contains
some noise. After FCSD, the spectrum HFCSD( f ) consists of three separate lines of a symmetric line
shape W ( f ).

Example 12.2: Show that the Fourier transform �{WR( f )} of an asymmetric line shape
WR( f ) has a non-zero imaginary part.

Solution. Any function can be expressed as the following sum:

WR( f ) = 1

2
[WR( f ) + WR(− f )] + 1

2
[WR( f ) − WR(− f )] = G1( f ) + G2( f ),

where

G1( f ) = 1

2
[WR( f ) + WR(− f )]
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is a symmetric function, and

G2( f ) = 1

2
[WR( f ) − WR(− f )]

is an antisymmetric function.
If the line shape function is asymmetric, then G2( f ) is a non-zero function. The Fourier

transform of the asymmetric line shape function is then

�{WR( f )} = �{G1( f )} + �{G2( f )}

=
∞∫

−∞
cos(2π t f )G1( f )d f + i

∞∫
−∞

sin(2π t f )G1( f )d f

+
∞∫

−∞
cos(2π t f )G2( f )d f + i

∞∫
−∞

sin(2π t f )G2( f )d f

=
∞∫

−∞
cos(2π t f )G1( f )d f + i

∞∫
−∞

sin(2π t f )G2( f )d f.

The term
∞∫

−∞
cos(2π t f )G1( f )d f is real, and the term i

∞∫
−∞

A sin(2π t f )G2( f )d f is imagi-

nary. The following two integrals vanish. Since G2( f ) is a non-zero function, then also the

integral i
∞∫

−∞
sin(2π t f )G2( f )d f is not identically zero.

12.6 Even-order derivatives and FSD

FSD is not the only method which is used in resolution enhancement of a recorded spectrum;
another often employed is the computation of even-order derivatives.

The most practical way to compute the derivative of a spectrum is to use Fourier trans-
forms. According to the derivative theorem, differentiation in the spectral domain corresponds
to multiplying by (−i2π t) in the signal domain. If a spectrum H( f ) in f -domain is differ-
entiated k times, then the corresponding signal h(t) = �{H( f )} in t-domain is multiplied by
the function

A(t) = (−i2π t)k . (12.26)

We can write the kth derivative as

dk

d f k
H( f ) =

∞∫
−∞

(−i2π t)kh(t)e−i2π f t dt. (12.27)

In practice, differentiation alone does not lead to a good result, if the spectrum contains
noise. In this case, the derivative of the spectrum looks like pure noise. In addition to
differentiation, it is necessary to smooth the spectrum; this is demonstrated in Figure 12.14.
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Figure 12.14: The derivative dH( f )/d f of an unsmoothed spectrum H( f ) looks like pure noise,
whereas the derivative dHs( f )/d f of a smoothed spectrum Hs( f ) may be useful.

It is practical to make also smoothing of the spectrum in t-domain, by multiplying the
corresponding signal by a window function. The best window function is a boxcar func-
tion �(t), because it distorts the shape of the derivative the least (see Section 12.5). Hence,
combined derivation and smoothing of a spectrum H( f ) in f -domain is done by multiplying
the corresponding signal h(t) in t-domain by the function

A�(t) = (−i2π t)k�(t). (12.28)

The line shape of the derivative of a spectrum is complicated compared to the line shape
after FSD, where it can be chosen by using the desired smoothing function. The kth derivative
of a smooth spectral line has k +1 positive or negative peaks, and k zero-crossings. If k is odd,
the derivative is antisymmetric, and one of the zero-crossings lies exactly at the line position.
If k is even, the derivative is symmetric, and the highest peak (by absolute value) lies at the
line position.

In FSD, the resolution enhancement factor

K = FWHM of the original line

FWHM of the new line

is the same as the smoothing parameter

K = FWHM of the original line

FWHM of the smoothing function
,
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since the smoothing function is the same as the new line shape, and it may be chosen freely.
In derivation, the resolution enhancement factor is not the same as the smoothing parameter,
and it can obtain only some fixed values. If the line shape is Lorentzian, the second, fourth,
and sixth derivatives are, respectively, 2.7, 3.9, and 5.3 times narrower than the original line.

The signal-to-noise ratio of even-order derivative spectra are approximately the same as
those of Fourier self-deconvolved spectra with the same value of K . In both methods, the
maximum value of K is limited by the signal-to-noise ratio of the original spectrum. The
optimum number of derivations of a Lorentzian line with (S/N ) ≈ 200, 2000, and 20 000 are,
respectively, two, four, and six.

Figure 12.15 is a comparison of even-order derivative spectra and Fourier self-deconvolved
spectra of noisy Lorentzian lines with three different values of (S/N ). We can see that the
signal-to-noise ratios are comparable in both methods, but FSD yields a far better line shape.

Figure 12.15: Comparison of derivation and FSD. Left: a Lorentzian line with (S/N ) = 200, the
second derivative of a Lorentzian line with (S/N ) = 200, the fourth derivative of a Lorentzian line
with (S/N ) = 2000, and the sixth derivative of a Lorentzian line with (S/N ) = 20 000. The orders
of differentiation are optimal to the signal-to-noise ratios. Right: a Lorentzian line with (S/N ) = 200,
and Fourier self-deconvolutions of Lorentzian lines with (S/N ) = 200, (S/N ) = 2000, and (S/N ) =
20 000. The line shape after FSD was Bessel function (see Figure 12.6), and the value K was in each
case chosen to be the same as in the left column.
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Example 12.3: A spectrum consists of spectral lines which are all of the same Lorentzian
shape

constant × L( f ) = constant

σ 2 + f 2
.

In order to enhance spectral resolution, the spectrum is differentiated twice and multiplied
by (−1). (a) Determine the new line shape −L(2)( f ) (without signal truncation). (b) Find an
estimate for the FWHM of −L(2)( f ), and also for the resolution enhancement factor K .

Solution. (a) The first derivative of L( f ) is

L(1)( f ) = − 2 f

(σ 2 + f 2)2
.

The second derivative is

L(2)( f ) = − 2

(σ 2 + f 2)2
+ 8 f 2

(σ 2 + f 2)3
.

Consequently, the new line shape is

−L(2)( f ) = 2σ 2 − 6 f 2

(σ 2 + f 2)3
.

(b) Let us first find the point f1/2 where −L(2)( f1/2) = − 1
2 L(2)(0). The FWHM of the

new line is, then, 2 f1/2.
At f = 0:

−L(2)(0) = 2σ 2

σ 6
= 2

σ 4
.

Consequently, the condition −L(2)( f1/2) = − 1
2 L(2)(0) gives

2σ 2 − 6 f 2
1/2

(σ 2 + f 2
1/2)

3
= 1

σ 4
,

or

σ 6 − 9σ 4 f 2
1/2 − 3σ 2 f 4

1/2 − f 6
1/2 = 0.

This equation has the root, approximately,

f1/2 ≈ σ

3.0550
.

The resolution enhancement factor is, thus,

K = 2σ

2 f1/2
≈ 2σ

2σ/3.0550
= 3.0550.

This resolution enhancement factor is, in practice, only a theoretical upper limit, because
the spectrum must be smoothed in addition to differentiation, that is, the signal must be
truncated, and this makes the lines wider and the true value of K smaller.
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Problems

1. A spectrum consists of spectral lines which are all of the same shape

WR( f ) = B
σ 2

σ 2 + f 2
,

where the constant B is the height of a line. By which function should we multiply the
signal, if we wish to obtain a new line shape W ( f ) = BT sinc2(πT f )?

2. A spectrum consists of spectral lines which all are of Lorentzian shape and which all
have the same FWHM of 2σ . In order to change the shape of the lines from Lorentzian
to triangular, Fourier self-deconvolution is applied. By which function should the signal
be multiplied, if the spectral resolution enhancement factor should be K , and

(a) the areas of the lines should not be changed, or

(b) the heights of the lines should not be changed?

3. A spectrum consists of spectral lines which all are of Lorentzian shape and have the same
FWHM of 2σ . Fourier self-deconvolution is applied in such a way that also the new lines
are of Lorentzian shape, but their FWHM is 2σ ′ < 2σ . Compute the signal-to-noise
ratio enhancement factor Q0 as a function of the smoothing parameters K and K0, if the
signal was in registration truncated in the time interval [−T0, T0]. You can approximate
e−2πσ ′T0 ≈ 0.

4. Show that the signal-to-noise-ratio of Lorentzian lines is enhanced in FSD by the fac-
tor (Eq. 12.19)

Q0 = (S/N )′

(S/N )
≈

π
√

1.2067K0σ
∞∫
0

A(t) dt√
∞∫
0

A2(t)e4πσ t dt

,

if the signal has been multiplied by a boxcar function in registration.

Hint: If a noisy signal is apodized (multiplied) by a function B(t), then the rms-value of

the noise in the spectrum is multiplied by

√
∞∫

−∞
B2(t) dt . You can assume e−2πσ T0 ≈ 0.

The function A(t) is symmetric.

5. As suggested by A. Losev [7], asymmetric spectral lines can be described by the line
profile

WR( f ) = B

e−a f + ebf
,

where a, b, and B are positive real constants. The constant B is determined by the
condition that the area of the line shape function must be equal to one, i.e., �{WR( f )} =
1 at t = 0.
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If a spectrum consists of lines of this shape, by which function should the signal be
divided in FSD?

Hint: From mathematical tables,

∞∫
0

cosh(Cx)

cosh(Dx)
dx = π

2D

1

cos [Cπ/(2D)]
, Re(D) > Re(C).

6. The part of a spectrum which contains spectral lines of height A1, A2, and A3 at wave-
numbers ν1, ν2, and ν3, respectively, has been separated from the rest of the spectrum. All
these three lines are of the line shape WR(ν), and the piece of spectrum can be expressed
as

S(ν) = A1WR(ν − ν1) + A2WR(ν − ν2) + A3WR(ν − ν3).

(a) With which function should the line shape function WR(ν) be convolved in order to
obtain the spectrum S(ν) with three lines?

(b) By which function should the signal corresponding to the spectrum S(ν) be divided
in order to leave the pure line shape function WR(ν) in the spectral domain?

7. Applying the derivative theorem, find the derivative function of the function

�L(x − s) =
{

1, |x − s| ≤ L/2,

0, |x − s| > L/2,

which is the boxcar function of width L and height one, shifted by s from the origin.

8. A Lorentzian spectral line is differentiated twice and multiplied by (−1). Determine the
relative height of the negative sidelobes of the new line shape, i.e., −O/S, where O is
the depth of the sidelobes, and S is the height of the line.

9. All the lines of a line spectrum are of the Gaussian shape, i.e., if shifted to origin they
are of the form AG(ν) = Ae−Cν2

, where A and C are real constants, and C > 0. In
order to enhance spectral resolution, the spectrum is differentiated twice and multiplied
by (−1). The new spectral lines are of the form −AG(2)(ν). The effect of smoothing can
be neglected.

(a) What is the relative height of the negative sidelobes of the differentiated line shape?

(b) Find an estimate for the FWHM of −G(2)(ν), as well as an estimate for the resolution
enhancement factor

K = FWHM of original line shape

FWHM of new line shape
.

10. A spectrum S(ν) is differentiated and, in addition, smoothed by multiplication by the
boxcar function �2L (x) in the signal domain. Show that this whole operation is a
convolution in the spectral domain. Which function is the spectrum S(ν) convolved
with?

Hint: Use the derivative and the convolution theorems.
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11. Applying the derivative theorem, determine the first and the second derivative functions
of the function

�L(x − s) =
{

1 − |x − s|/L , |x − s| ≤ L ,

0, |x − s| > L ,

which is the one-unit high triangular function of FWHM L , shifted by s from the origin.
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13.1 Linear prediction and extrapolation

Linear prediction1 is a means of estimating a missing sample of a sampled function. As
the name implies, the missing sample is calculated as a linear combination of the known
samples. Usually the known samples either all precede or all follow the missing sample.
Correspondingly, we speak about forward linear prediction or backward linear prediction. In
Fourier transform interferometry, the sequence of samples will always be a series or equi-
distant interferogram samples I j , and in NMR it is the FID signal, but we will call it more
generally signal. The forward predicted estimate I ′

j of a sample I j can be written as

I ′
j = �x

M∑
l=1

hl I j−l , (13.1)

and the backward predicted estimate as

I ′
j = �x

M∑
l=1

h∗
l I j+l . (13.2)

The reason for complex conjugating the coefficients in the backward equation will be ex-
plained in the following section. This detail is not important for us, however, since we will
restrict ourselves to real coefficients hl .

The usefulness of linear prediction in spectroscopy comes from its property that it lends
itself readily to extrapolation. By applying linear prediction repeatedly, using predicted sam-
ple estimates to predict more estimates, we are able to extrapolate a measured signal. We call
the signal predictable if hl -coefficients exist such that the predicted estimate is free of errors,
or I ′

j = I j independent of j . Thus, predictability means that the signal can be extrapolated
arbitrarily far without errors. The prediction equations, Equations 13.1 and 13.2, then define
the one-point extrapolation.

1Chapter 13 is contributed by Dr. Pekka Saarinen, Dept. of Applied Physics, University of Turku, Finland

Fourier Transforms in Spectroscopy. J. Kauppinen, J. Partanen
Copyright © 2001 Wiley-VCH Verlag GmbH

ISBNs: 3-527-40289-6 (Hardcover); 3-527-60029-9 (Electronic)
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13.2 Extrapolation of linear combinations of waves

According to what was mentioned above, if in Equation 13.1 the estimate is errorless, then
we can extrapolate the signal sample by sample as far as we wish. This kind of situation is
very advantageous, and it is worth examining under what conditions the equidistant samples
I j = I ( j�x) can be extrapolated in this way. We begin with the exponential wave I (x) =
A exp(i2πνx + iφ), where A is a real constant. Clearly, the ratio of two successive samples
is in this case constant (which we denote by �xCν), since

I j+1

I j
= ei2πν( j+1)�x+iφ

ei2πν j�x+iφ
= ei2πν�x = �xCν, (13.3)

which is independent of j . Thus, signal A exp(i2πνx + iφ) can be extrapolated without
errors by using only one previous sample in each prediction. Then, M = 1 and h1 = Cν =
exp(i2πν�x)/�x .

Next, we shall discuss the predictability of a much more realistic signal that is a linear
combination of exponential waves with different wavenumbers. We saw above that one
exponential wave (with arbitrary amplitude and phase shift) can always be extrapolated. If we
manage to show that adding one new exponential wave to a predictable signal I (x) does not
destroy its predictability, then we can add the waves one by one, and it follows that any linear
combination of such waves can be extrapolated by linear prediction. To this end we assume
that I (x) can be extrapolated using M hl -coefficients h1, . . . , hM . We add to it the exponential
wave e(x) = A exp(i2πνx + iφ) and try to extrapolate the summed signal I (x) + e(x).
According to Equation 13.3, equidistant samples taken from e(x) can be extrapolated by
multiplying the previous sample by �xCν = exp(i2πν�x). We thus have

{
I j = �xh1 I j−1 + �xh2 I j−2 + · · · + �xhM I j−M ,

e j = �xCνe j−1 ,
(13.4)

where j is any integer. We now claim that equidistant samples taken from I (x) + e(x) can be
extrapolated by using the M + 1 coefficients h′

1, . . . , h′
M+1, where




h′
1 = h1 + Cν,

h′
2 = h2 − �xh1Cν,

h′
3 = h3 − �xh2Cν,

...

h′
M = hM − �xhM−1Cν,

h′
M+1 = −�xhM Cν .

(13.5)

If we can prove that an arbitrary sample I j + e j from the summed signal is a linear
combination of the preceding M +1 samples, with the coefficients given by Equation 13.5, we
have proved that I (x) + e(x) is predictable, and have even found the prediction coefficients.
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The right-hand side of the forward prediction equation (Equation 13.1) now reads as

�xh′
1

(
I j−1 + e j−1

) + �xh′
2

(
I j−2 + e j−2

) + · · ·
+ �xh′

M

(
I j−M + e j−M

) + �xh′
M+1

(
I j−M−1 + e j−M−1

)
= �x (h1 + Cν)

(
I j−1 + e j−1

) + �x (h2 − �xh1Cν)
(
I j−2 + e j−2

) + · · ·
+ �x (hM − �xhM−1Cν)

(
I j−M + e j−M

) − (�x)2 hM Cν

(
I j−M−1 + e j−M−1

)
= (

�xh1 I j−1 + �xh2 I j−2 + · · · + �xhM I j−M
) + (

�xCνe j−1
)

+ �xCν

[
I j−1 − �xh1 I j−2 − · · · − �xhM−1 I j−M − �xhM I j−M−1

]
+ �xh1

[
e j−1 − �xCνe j−2

] + �xh2
[
e j−2 − �xCνe j−3

] + · · ·
+ �xhM

[
e j−M − �xCνe j−M−1

]
.

It follows immediately from Equation 13.4 that all expressions in square brackets vanish.
Likewise, we see that the two expressions in parentheses in the final summation are equal to
I j and e j . Thus, the above equation simplifies to

�xh′
1

(
I j−1 + e j−1

) + �xh′
2

(
I j−2 + e j−2

) + · · ·
+ �xh′

M

(
I j−M + e j−M

) + �xh′
M+1

(
I j−M−1 + e j−M−1

)
= I j + e j .

Thus, the value of the summed function I (x) + e(x) at any point x can indeed be calculated
as a linear combination of its values at the points x − �x, x − 2�x, . . . , x − (M + 1)�x .

Now we remember that all sinusoidal waves can be stated as linear combinations of two
exponential waves with opposite wavenumbers. Namely,


cos(2πνx) = 1

2
ei2πνx + 1

2
ei2π(−ν)x ,

sin(2πνx) = 1

2i
ei2πνx − 1

2i
ei2π(−ν)x = 1

2
ei2πνx−iπ/2 − 1

2
ei2π(−ν)x−iπ/2 .

(13.6)

Therefore, one sinusoidal wave can be extrapolated by linear prediction using two coeffi-
cients hl . Further, since a linear combination of n sinusoids is a linear combination of
2n exponential waves, it can be extrapolated using 2n hl -coefficients. This result is very
important to us, because after FSD every spectral line corresponds to one sinusoid in the
signal domain. (In the absence of phase errors, this sinusoid is always a cosine wave.) The
necessary hl -coefficients, when the wavenumbers νk are known, can be found for example as
follows: First set M = 1 and h1 = Cν1 = exp(i2πν1�x)/�x . Then increase M by one
and update the hl -coefficients according to Equation 13.5, with Cν calculated from the current
ν-value, until all the ν-values have been taken into account. This procedure gives so-called
theoretical impulse response, which we shall consider afresh later.

It is also important to note that Equation 13.5 does not include the amplitude A and the
phase φ of the new exponential wave at all. This means that once we have constructed the
hl -coefficients, they are able to extrapolate any linear combination of the exponential waves
with the given wavenumbers, irrespective of the amplitudes and phases of these constituent
waves.
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Above we have discussed only extrapolation by forward linear prediction, as defined in
Equation 13.1. When the signal is predicted backward, as in Equation 13.2, the situation
is identical to first mirroring the signal and after that predicting it forward. In the mir-
roring operation every unshifted exponential wave e(x) = exp(i2πνx) is changed to the
complex conjugated wave exp(−i2πνx) = e∗(x). Thus, if I (x) is a linear combination
of unshifted exponential waves, it is changed to I ∗(x), and complex conjugating the forward
prediction equation and substituting − j for j gives the backward prediction equation, with the
hl -coefficients complex conjugated. In the special case that the combination of exponential
waves is symmetric, or in other words, a linear combination of cosine waves, it is unaffected
by complex conjugation (mirroring). Then, comparing Equations 13.1 and 13.2, we see that
h∗

l = hl for every j , that is, the hl -coefficients are real. Since shifting the cosine waves does
not affect their predictability, we can state the more general result that any linear combination
of shifted cosine waves can be extrapolated by real hl -coefficients.

13.3 Extrapolation of decaying waves

Thus far the wavenumber ν has always been a real quantity. In linear prediction theory this
means that the constituent waves A exp(i2πνx + iφ) have constant amplitudes. Nevertheless,
in deriving Equations 13.3–13.5, real ν-values were not assumed at any stage. Thus we may
substitute

ν = ν0 + i
α

2π
, (13.7)

and Equations 13.3–13.5 stay valid. The complex wavenumber of Equation 13.7 represents
an exponentially decaying wave, since it gives

Aei2πνx = Ae−αx ei2πν0x .

Thus, a linear combination of M exponentially decaying (or growing) exponential waves can
also be extrapolated using M hl -coefficients. Then, however, the same coefficients are not
necessarily capable of backward extrapolation.

In addition to exponential decay, there are certain other amplitude functions that preserve
the predictability. These include polynomial amplitudes. Search of all possible types of
predictable functions, however, goes beyond the scope of this book. Besides, in resolution
enhancement, which is the most important spectroscopic application of linear prediction, the
constituent waves are made nondecaying by FSD. This can be done, because in a relatively
narrow area most spectra (excluding NMR) can be assumed to have constant line shape, which
means that all the constituent waves decay in a similar manner. It would also be unwise to
extrapolate a decaying signal very far, since before long it would die out.
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13.4 Predictability condition in the spectral domain

According to the above reasoning, if the signal is a linear combination of a finite number of
exponential waves, it is predictable and thereby can be extrapolated. Since the inverse Fourier
transform of an exponential wave is a Dirac’s delta function shifted to its wavenumber ν (see
Table 1.1), a signal is predictable if its spectrum consists of a finite number of shifted delta
functions. Let us now assume that the signal indeed is a linear combination of M different
exponential waves, and that we have found the coefficients h1, . . . , hM able to extrapolate
it. Remember that these coefficients are then able to extrapolate any linear combination of
these waves. Thus, if νk is the wavenumber of one of the constituent waves, then the wave
e(x) = exp(i2πνk x) alone can be extrapolated by the hl -coefficients. Especially the value of
e(x) in the origin can be predicted forward as a linear combination of M preceding samples,
or

e0 = e(0) = �xh1e−1 + �xh2e−2 + · · · + �xhM e−M ,

or

1 = �xh1e−i2πνk�x + �xh2e−i2πνk2�x + · · · + �xhM e−i2πνk M�x . (13.8)

Comparing the right-hand side of this equation with Equation 3.3 reveals that it is, in fact,
H(νk), or the inverse discrete Fourier transform of the sequence h1, . . . , hM computed at the
point νk . (Note that hl = 0 for j < 1 and j > M .)

The above reasoning is also valid to the inverse direction: If H(νk) = 1, then clearly
Equation 13.8 holds, and e(0) can be predicted forward by h1, . . . , hM . Multiplying both
sides of Equation 13.8 by exp(i2πνk x) shows that e(x) can be predicted at an arbitrary point
x as well. We thus have the predictability condition

H(νk) = 1. (13.9)

When this condition is valid, the coefficients h1, . . . , hM can be used to extrapolate an expo-
nential wave with the wavenumber νk . We call H(ν) the transfer function.

Note that if the constituent waves are nondecaying (have constant amplitudes), then the
predictability condition of Equation 13.9 also implies that the signal can be predicted back-
ward. This can be seen by complex conjugating Equation 13.8, giving

1 = �xh∗
1ei2πνk�x + �xh∗

2ei2πνk2�x + · · · + �xh∗
M ei2πνk M�x .

Multiplying this equation by exp(i2πνk x) we obtain the backward one-point prediction de-
fined by Equation 13.2.

An alternative derivation of the condition of Equation 13.9 would be to apply the discrete
convolution theorem derived earlier in Example 3.3. Since the forward prediction of Equa-
tion 13.1 in fact is the discrete convolution

h ∗ I, (13.10)

the discrete convolution theorem gives

E(ν) = �
−1{h}E(ν) = H(ν)E(ν). (13.11)
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Note that we have interpreted the signal vector I infinitely long, and h has also been zero-
padded from both ends to infinity. Therefore, according to Equation 3.20, their spectra E(ν)

and H(ν) are continuous-parameter functions, since �ν = 0. Equation 13.11 implies that
H(ν) = 1 anywhere the spectrum differs from zero, which is just at the wavenumbers of
the exponential waves contained in the signal. If the number of the constituent waves is M ,
then the number of hl -coefficients required to fulfill the condition in Equation 13.11 at the
wavenumbers of them all is naturally M .

In Figure 13.1 there is an example of a Fourier self-deconvolved spectrum E(ν), consisting
only of a set of shifted Dirac’s delta functions. Above it, there is inverse Fourier transform
H(ν) of such impulse response coefficients that can extrapolate the signal �{E(ν)}. As may
be seen, H(ν) = 1 anywhere E(ν) differs from zero.

Figure 13.1: A Fourier self-deconvolved line spectrum E(ν) and (inverse) Fourier transform of a
sequence of hl -coefficients able to extrapolate its Fourier transform. Then, the transfer function
H(νk) = 1 for every νk .

13.5 Theoretical impulse response

Comparing Equation 13.10 to Equations 5.19 or 11.13 suggests calling the vector

h = (h1, . . . , hM ) (13.12)

impulse response. This appellation is correct in one-point extrapolation. In longer extrap-
olation the name impulse response can be misleading, however, due to error accumulation.
From now on we shall in any case use the name impulse response and call the prediction
coefficients hl by the name impulse response coefficients.

By theoretical impulse response we mean such a sequence of impulse response coefficients
h1, . . . , hM that has been designed to predict correctly exponential (or sinusoidal) waves with
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some predetermined wavenumbers. If the length M of the impulse response is chosen equal to
the number of the exponential waves (or twice the number of sinusoids), then the coefficients
are determined uniquely. There are different ways of finding these coefficients. We have
already come across one of them, based on adding the wavenumbers one by one into the
impulse response by repeated application of the summation formula of Equation 13.5.

Alternatively, the impulse response coefficients can be solved all at once. This approach
leads to a set of linear equations. The M equations can be formed by writing the predictability
condition, Equation 13.9, for each of the M wavenumbers νk that should be predictable. This
gives M complex equations

�x
M∑

l=1

hl e
−i2πνkl�x = 1, k = 1, . . . , M (13.13)

to solve the M unknown coefficients h1, . . . , hM . Another strategy for forming the set of
equations would be to use a continuous trial solution h(x) with M adjustable parameters, and
take the hl -coefficients by sampling it. This approach was used in the original version of
theoretical impulse response. A set of linear equations is obtained by stating h(x) as a linear
combination of the same exponential waves that should be predictable, or

h(x) =
∑

k

[
C+

k ei2πνk x + C−
k e−i2πνk x

]
. (13.14)

Substituting hl = h(l�x) in Equation 13.13 leads to a set of linear equations for solving the
C±

k -coefficients. Note that the set of equations obtained is always complex. Equation 13.14
is intended for sinusoidal (possibly real) signal, since it requires predictability at symmetric
wavenumber pairs ±νk .

Although calculating the C±
k -coefficients and after that sampling the continuous impulse

response h(x) may seem unnecessarily complicated, this procedure has one important advan-
tage: the number of the impulse response coefficients is no longer forced to equal the number
of the wavenumbers νk . Instead, we can sample h(x) much further, since the hl -coefficients
are not solved directly from the Equations 13.13, wherefore their number may differ from
the number of equations. This is an important detail, since the frequency tuning method,
presented in Section 13.12, has turned out to behave properly only if M is as large as possible.
For solving the C±

k -coefficients, see Problem 7.
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13.6 Matrix method impulse responses

Given a set of measured, and preferably Fourier self-deconvolved, signal samples, the im-
pulse response coefficients can also be determined by requiring that they predict correctly
M selected, known samples. If these samples are successive, this requirement in the case of
forward prediction can be written

I ′
j = I j , j = J + M, . . . , J + 2M − 1. (13.15)

Inserting I ′
j from Equation 13.1 leads to a set of M equations linear in the hl -coefficients.

Since this set can be dressed as a matrix equation, the sequence of hl -coefficients it gives
is called matrix method impulse response. Above IJ is the lowest-index sample used in the
calculations, since the first one of the equations reads

�xh1 IJ+M−1 + · · · + �xhM IJ = IJ+M .

In spectroscopy, detector saturation effects or spectral background distortions tend to affect
significantly the first few interferogram samples, making the use of nonzero J worthwhile.

If, as it usually is, the signal is not exactly predictable by M impulse response coefficients,
the resulting coefficients may behave badly in extrapolation. Then it is a good idea to use
more than M equations in the set of Equation 13.15. Naturally, an exact solution no longer
exists, but we can find the best fit, minimizing the square sum of the errors I ′

j − I j . Thus, if we
denote by N the total number of samples utilized in the calculations (N = 2M+ the number
of excess equations), we have the minimization problem

J+N−1∑
j=J+M

(I ′
j − I j )

2 = min! (13.16)

Note always that N ≥ 2M , since in addition to the samples predicted, at least M samples
preceding them must also be known in order to compute the estimates I ′

j .
In some cases, especially if the signal contains very nearby frequencies and M is small,

the solution of the minimization problem, Equation 13.16, can be very sensitive to noise,
since the absolute values of the hl -coefficients obtained are very large. It may then be wise
somehow to prevent the coefficients from obtaining too large absolute values. This can be
done by adding a small penalty in the above functional, punishing according to the size of the
impulse response. Using a suitably scaled square sum of the impulse response coefficients as
the penalty functional yields the minimization problem

J+N−1∑
j=J+M

(I ′
j − I j )

2 + �

M∑
j=1

(�xhl )
2 = min! (13.17)

The parameter � can be used to adjust the relative importance of the size of the impulse
response. Normally, a surprisingly small �, such as 10−10, is enough to bring down the
excessive sizes of the hl -coefficients. The effect of using nonzero � has been illustrated by a
simulated example in Figure 13.2. Instead of the hl -coefficients, their inverse discrete Fourier



13.6 Matrix method impulse responses 237

Figure 13.2: Even though H(ν) in plot (a) fulfills the predictability condition at the positions νk of
the spectral lines, the corresponding hl -coefficients behave badly when extrapolating a noisy signal.
However, according to plot (b), a very small penalty coefficient ρ in the matrix method is enough to
improve H(ν) considerably, without significantly affecting its values at the wavenumbers νk . [8]

transform H(ν) is drawn, since it is more illustrative. (Remember the predictability condition,
Equation 13.9.) The signal used to compute the impulse response coefficients contained three
noiseless cosine waves with the wavenumbers 100, 110, and 115, and the parameter values
used were M = 20 and N = 50. As we can see from plot (a), without the �-penalty H(ν)

oscillates vigorously. If the signal contains noise at the wavenumbers where |H(ν)| is very
large, the extrapolation can be totally spoiled. On the other hand, as may be seen from plot (b),
as small penalty coefficient as 10−10 is enough to force |H(ν)| down, without considerably
affecting the validity of the predictability condition.

Let us now assume that we want to obtain M impulse response coefficients by fitting the
forward prediction condition as well as possible to N − M signal samples. We then need to
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know the N signal samples IJ ,. . . ,IJ+N−1 in our attempt to solve the system of equations


IJ+M = �xh1 IJ+M−1 + �xh2 IJ+M−2 + · · · + �xhM IJ ,

IJ+M+1 = �xh1 IJ+M + �xh2 IJ+M−1 + · · · + �xhM IJ+1,
...

IJ+N−1 = �xh1 IJ+N−2 + �xh2 IJ+N−3 + · · · + �xhM IJ+N−M−1 .

This set of linear equations can be stated in matrix form as

�x




IJ+M−1 IJ+M−2 · · · IJ

IJ+M IJ+M−1 · · · IJ+1
...

...
...

IJ+N−2 IJ+N−3 · · · IJ+N−M−1







h1
h2
...

hM


 =




IJ+M

IJ+M+1
...

IJ+N−1


 , (13.18)

or in short

�x�h = I. (13.19)

The solution of the least squares problem of Equation 13.16 then is

h = 1

�x
(�H

�)−1
�

H I. (13.20)

In the above, superscript H represents conjugate transposition; that is, the matrix is transposed
and in case its elements are complex they also are complex conjugated.

When the size of the impulse response matters, we have to solve the minimization problem
of Equation 13.17, whose solution is

h = 1

�x
�

−1
� y , (13.21)

where {
� � = �

H
�+ ��,

y = �
H I .

(13.22)

When the impulse response is determined by fitting the backward prediction condition to
known samples, Equation 13.18 is replaced by the equation

�x




I ∗
J+N−M I ∗

J+N−M+1 · · · I ∗
J+N−1

I ∗
J+N−M−1 I ∗

J+N−M · · · I ∗
J+N−2

...
...

...

I ∗
J+1 I ∗

J+2 · · · I ∗
J+M







h1
h2
...

hM


 =




I ∗
J+N−M−1

I ∗
J+N−M−2

...

I ∗
J


 .

(13.23)

Note that the backward prediction equations have been complex conjugated so that impulse
response coefficients appear nonconjugated. Now, if the matrix � and vector I are taken from
Equation 13.23 instead of Equation 13.18, then Equations 13.20–13.22 remain unchanged.
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13.7 Burg’s impulse response

We call Burg’s impulse response such a sequence of impulse response coefficients that is
obtained by using Burg’s formula (see below). Since Burg’s formula is meaningful only in
connection with so-called Levinson–Durbin recursion, we present it first. To this end let us
assume that I (x) is predictable and can be extrapolated to both directions without errors using
the m − 1 coefficients h(m−1)

1 , . . . , h(m−1)
m−1 . We can thus insert M = m − 1 and I ′

j = I j in the
backward prediction Equation 13.2 and rewrite it as

�x

(
− 1

�x
I j + h(m−1)∗

1 I j+1 + · · · + h(m−1)∗
m−2 I j+m−2 + h(m−1)∗

m−1 I j+m−1

)
= 0

or, substituting j − m for j and reorganizing,

�x

(
h(m−1)∗

m−1 I j−1 + h(m−1)∗
m−2 I j−2 + · · · + h(m−1)∗

1 I j−(m−1) − 1

�x
I j−m

)
= 0.

The latter equation means that an attempt to predict the signal sample I j forward by using

the m coefficients h(m−1)∗
m−1 , h(m−1)∗

m−2 , . . . , h(m−1)∗
1 , − 1

�x
produces zero. Therefore, adding

or subtracting these coefficients, multiplied by an arbitrary constant �xr , to the original
impulse response with m−1 coefficients, produces a new impulse response with m coefficients
h(m)

1 , . . . , h(m)
m defined by the equations




h(m)
1 = h(m−1)

1 − �xrh(m−1)∗
m−1 ,

h(m)
2 = h(m−1)

2 − �xrh(m−1)∗
m−2 ,

...

h(m)
m−1 = h(m−1)

m−1 − �xrh(m−1)∗
1 ,

h(m)
m = r .

(13.24)

This procedure for increasing the length of the impulse response by one is known as Levinson–
Durbin recursion. The arbitrary coefficient r , in turn, is known as the reflection coefficient.
As the bottommost equation shows, it equals the last coefficient in the new, extended impulse
response.

If the impulse response coefficients are able to extrapolate the signal without errors, then
the Levinson–Durbin recursion, Equation 13.24 presented above, yields another, longer series
of coefficients, that is capable of the same. The normal use of the recursion is to start from
only one impulse response coefficient and add the number of coefficients one by one, in the
hope of eventually obtaining an acceptable impulse response. Since very few signals can be
predicted acceptably with only one coefficient, the coefficients are very bad initially. The
choice of how the reflection coefficients are computed is then crucial to the outcome of the
iteration.
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In computing the reflection coefficients, Burg’s formula has proven very effective. It reads

r = h(m)
m = 2

�x

N−1∑
n=m

e(m−1)
n b(m−1)∗

n−1

N−1∑
n=m

[
|e(m−1)

n |2 + |b(m−1)
n−1 |2

] , (13.25)

where again N is the total number of signal samples utilized in the computations. Now,
however, it is enough that N > M . The numbers e(m−1)

n and b(m−1)
n are the prediction residuals

when predicting In forward or In−m+1 backward by using the impulse response coefficients
h(m−1)

1 , . . . , h(m−1)
m−1 . They are also easily obtained recursively from e(m−2)

n and b(m−2)
n−1 as




e(m−1)
n = In − I ′(m−1)

n = In − �x
m−1∑
l=1

h(m−1)
l In−l

= e(m−2)
n − �xh(m−1)

m−1 b(m−2)
n−1 ,

b(m−1)
n = In−m+1 − I ′(m−1)

n−m+1 = In−m+1 − �x
m−1∑
l=1

h(m−1)∗
l In−m+1+l

= b(m−2)
n−1 − �xh(m−1)∗

m−1 e(m−2)
n .

(13.26)

The Levinson–Durbin recursion and Burg’s formula should be applied repeatedly, until an
impulse response with the desired length M is obtained. The procedure can be described as
follows:

Step 1: Decide the length M of the desired impulse response, and the number N > M
of signal samples used in computing it. Set m = 1 and e(0)

n = b(0)
n = In ,

n = 0, . . . , N − 1.
Step 2: Compute h(m)

m from the Burg’s formula, Equation 13.25. If m > 1, find the other
components h(m)

1 , . . . , h(m)
m−1 by applying Levinson–Durbin recursion, given by

Equation 13.24.
Step 3: If m = M , accept the latest impulse response coefficients and stop. Otherwise

increase m by 1, compute e(m−1)
n and b(m−1)

n with n = m − 1, . . . , N − 1 from
Equation 13.26, and return to Step 2.

13.8 The q-curve

Above, impulse response coefficients given by Burg’s formula and the matrix methods were
derived by fitting the prediction equations, Equations 13.1 and 13.2, into measured signal
samples. In matrix methods this fit behaves “normally” in the sense that the more samples
are fitted, the better will the obtained coefficients perform in extrapolating the signal, if M is
fixed. However, for Burg’s impulse response coefficients this is not quite true. Besides, in
both Burg’s method and matrix methods only one-point extrapolation was used in the fitting
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in order to get equations linear in the hl -coefficients. This does not guarantee the success of
longer extrapolations, where already predicted samples are used again to predict subsequent
samples. Thus, some method to evaluate the ability of given impulse response coefficients to
extrapolate a given signal would be very useful. A natural test would be to use the coefficients
actually to extrapolate a known piece of the signal, and to compare the output with the correct
signal samples by computing the square sum of the differences. In order to avoid dependence
on simple scaling of the signal, this square sum should be proportioned to the square sum of
the correct samples. This kind of test is the quality factor, or q-factor.

A very useful version of the q-factor, applicable to real spectra (whereupon the signal is
conjugate symmetric, or I− j = I ∗

j ), is to extrapolate the signal backward across the origin
to negative x-values. This has been demonstrated for a real signal in Figure 13.3. By using
this approach, the actual measured samples I0, I1, . . . need not be extrapolated, and therefore
remain free to be used in the calculation of the hl -coefficients. The exact definition is

q = 1 −

√√√√√√√√√
N0−1∑
j=J

| Î− j − I ∗
j |2

N0−1∑
j=J

|I j |2
. (13.27)

Here N0 is some fixed index that determines the last sample tested. It does not need to be
the same as the number N of samples used in computing the impulse response coefficients.
The extrapolated sample estimates are denoted as Î− j to make a difference with the one-point
extrapolations I ′

j , computed from correct samples. The q-factor is a function of M (number
of impulse response coefficients) and N (number of known samples used to compute the
coefficients), or q = q(M, N ). For that reason, it can be used to optimize these numbers.
Usually the difference N − M is fixed, and either q(N ) or q(M) is drawn, giving the q-curve.
The better are the coefficients h1, . . . , hM , the larger is the q-factor, the maximal value being
one.

Figure 13.3: The q-factor is computed by extrapolating the signal backward across the origin and
comparing the extrapolation with the mirror image of the original signal.
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13.9 Spectral line narrowing by signal extrapolation

In spectroscopy a problem encountered again and again is the overlapping of spectral lines that
are too wide compared with their interspaces. Therefore, an ability to narrow spectral lines
artificially would be extremely useful. For a line spectrum, such a line narrowing is equivalent
to resolution enhancement. Let us now ponder what such a line narrowing means in the signal
domain. We assume that all the spectral lines have (at least approximately) identical functional
line shape, with only line heights and positions varying.

In fact, line narrowing is the inverse of smoothing. In smoothing, all the spectral details
are spread so that every sharp detail is replaced by a continuous distribution concentrating in
the vicinity of the original detail. The purpose of smoothing is to suppress high-frequency
spectral noise, but an inevitable side effect is that the spectral lines become wider. This kind
of operation is clearly convolution by a function W (ν) that decays away from the origin.
Therefore, in the signal domain smoothing appears as simple multiplication (apodization) by
an also decaying truncation function. Thus spectral smoothing damps the signal, or makes it
narrower, and the inverse operation is therefore to enhance the signal far from the origin. The
same conclusion can also be arrived at from the similarity theorem (see Equation 2.9): When
the spectrum is narrowed by a coefficient a, the signal is widened by the same coefficient.
(See also Problem 6.10.)

We have already encountered one method of widening the signal, the FSD. However, FSD
is not able to increase the width of the signal unlimitedly. This limitation of FSD comes, of
course, from the fact that it cannot extend the signal beyond its point of truncation (see again
Figure 12.6). Signal extrapolation, however, offers us a means to overcome this limitation.

Let us assume that at νk there is a spectral line with area Ak . The original, recorded line
shape function, common to all the spectral lines, is assumed to be WR(ν). The partial spectrum
containing only the line at νk is therefore

Ek(ν) = Ak WR(ν − νk),

and the corresponding partial signal is the constituent wave

Ik(x) = � {Ek(ν)} = Ak� {WR(ν − νk)} = Akei2πνk x
� {WR(ν)} = Akei2πνk xwR(x),

where wR(x) = �{WR(ν)}. In line narrowing we always have several overlapping spectral
lines, and the partial spectrum under examination is a linear combination (compare Equa-
tion 12.1)

E(ν) =
∑

k

Ek(ν) =
∑

k

Ak WR(ν − νk), (13.28)

corresponding to the partial signal

I (x) = wR(x)
∑

k

Akei2πνk x . (13.29)

Let us assume that the original line shape WR(ν) is known (for instance thanks to a singlet
line near to the interesting spectral region), and only the number of lines, as well as their
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heights and positions, are to be determined. It would in principle be possible to fit even the
line shape by using a parametric line shape model, but this would make the problem very ill-
behaved. Even slightest errors in the input samples would be enough to completely muddle the
output. The most straightforward strategy of line narrowing would be to fit the model given
by Equation 13.28 directly in the spectral domain. Our strategy, however, is to fit the model
of Equation 13.29 in the signal domain. In the signal domain the amplitude function wR(x) is
separated to a common factor and it can be manipulated without knowing the coefficients Ak

and wavenumbers νk , or even the number of spectral lines. This is what made FSD so easy
and reliable a method. Likewise, when extrapolating the waves by using linear prediction,
the coefficients Ak do not affect the impulse response coefficients, as we have found earlier.
Line positions νk do affect the hl -coefficients, anyway. However, it is possible to deduce from
the line narrowed line shapes whether the corresponding waves Akei2πνk x were extrapolated
correctly by the impulse response coefficients used.

In Figure 13.4 there is a series of simulations of the line shape distortions when one of the
wavenumbers that the hl -coefficients can extrapolate, marked by νG, is varied in the vicinity
of a true line position νk = 250. The extrapolated signal is so apodized that the output line
shape should be symmetric Besselian (see Figure 12.6 E). As we can see, when νG 	= νk , the
output line shape is distorted in such a way that it has deeper sidelobe on the side that is away
from the true line position. In case of a multiline spectrum, this kind of behavior is valid for
each line separately. This information contained in the line shape distortions will be utilized
in the frequency tuning method, to be presented in Section 13.12.

Figure 13.4: Distortions in the symmetry of a narrowed spectral line can be used to search the exact line
position. [9]

13.10 Imperfect impulse response

Now we will briefly consider the realistic situation where the predictability condition, Equa-
tion 13.9, or equivalently, Equation 13.8, is not valid for every wavenumber νk present in the
signal. We begin by an impulse response with only one nonzero coefficient h1. If we write
�xh1 in the form

�xh1 = |�xh1| ei2πν0�x = exp (i2π [ν0 − i ln (|�xh1|) /(2π�x)] �x) ,
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a comparison with Equation 13.3 immediately reveals that this impulse response coefficient is
able to extrapolate correctly only an exponential wave with the complex wavenumber

νG = ν0 − i ln (�x |h1|) /(2π�x).

(If �x |h1| 	= 1, this wave is either decaying or growing.) Now, if h1 is used to extrapolate a
given signal, it interprets the last known sample IN−1 as a sample from an exponential wave
constant× exp(i2πνGx) and extrapolates it correspondingly, quite regardless of the behavior
of the signal prior to the sample IN−1.

In Figure 13.5 we see a simulated example of what happens when the imaginary part
of the wavenumber νG, which the hl -coefficients are able to extrapolate, is varied. The
signal extrapolated is a cosine wave, but it can also be interpreted as the real part of a single
nondecaying exponential wave. In the bottom row, νG coincides with the wavenumber νk

of the cosine wave. In the midmost row, Re {νG} = νk , but Im {νG} > 0, and on the
top row Re {νG} = νk , but Im {νG} < 0. Before taking inverse Fourier transform, the
extrapolated wave was apodized by squared parable to obtain a smoother, Besselian line shape
(see Figure 12.6 E). Note that when computing a theoretical impulse response, there is no
danger that νG would contain an unwanted imaginary part. However, especially when the
signal is extrapolated by a matrix method impulse response, it often happens that some partial
waves decay or increase.

Given M nonzero impulse response coefficients, the complex polynomial of the complex
variable exp (−i2πν�x),

1 − �x
M∑

l=1

hl

(
e−i2πν�x

)l
,

is of degree M and thereby has M distinct roots exp(−i2πνGk�x), excluding the very unusual
cases of multiple roots. According to Equation 13.8, the wavenumbers νG1, . . . , νGM corre-
sponding to these roots are such that the hl -coefficients are able to extrapolate them without
errors. When the extrapolation starts after the last reliable known signal sample IN−1, these
impulse response coefficients need the preceding M measured samples IN−1, . . . , IN−M , and
interpret them as samples from the group of waves

M∑
k=1

Ckei2πνGk x , (13.30)

where C j are complex constants. Thus, beginning from the sample IN−M , the extrapolated
signal can be interpreted as a linear combination of waves with the wavenumbers νG1, . . . , νGM

only. If N = M , there are no prior samples left to question this interpretation. However, if
N > M , the signal samples I0, . . . , IN−M−1 are not used in computing the extrapolated sam-
ples, and if there were originally other wavenumbers present in the signal than νG1, . . . , νGM ,
this situation is also visible in the line narrowed spectrum. This information is exploited in the
frequency tuning method to improve the impulse response coefficients, until the wavenumbers
νG1, . . . , νGM coincide with the true wavenumbers νk contained in the signal.

The above reasoning about the information content in the signal can also be performed in
the spectral domain as follows. Let us assume that we have N reliable signal samples. Then
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Figure 13.5: Impulse response coefficients extrapolate any signal as if it were one of the signals the
coefficients are able to extrapolate correctly. In case of a complicated signal, the correctness of the
extrapolation has to be deduced from the output line shape or by computing the q-factor. [9]

the corresponding spectrum also contains N independent spectral samples E0, . . . , EN−1.
Now, since we assume the functional form of the spectral line shape fixed, every line has only
two parameters associated in it, for example, height and position. When the impulse response
coefficients are given, they will always extrapolate the signal as a linear combination of only
those wavenumbers νGk that they are able to extrapolate. Thus the line positions in the output
spectrum are fixed, and only the heights of the lines can be used to explain the spectrum.
Therefore, in general, N spectral lines are needed to explain completely N arbitrary spectral
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samples. If, however, we are able to select the hl -coefficients freely, then the wavenumbers νGk

they are able to extrapolate can also be selected freely by computing a suitable theoretical
impulse response. Then both the line positions and heights can be adjusted, and at most N/2
(round fractions up) lines of a given shape are needed to explain completely a sequence of
N spectral samples. However, if the maximal number of spectral lines is used in explaining
the measured spectral samples, there is no residual spectrum left over to check the reliability
of the line narrowed spectrum.

In practice we can assume that our signal has no phase errors, or that the C j -coefficients
in the signal of Equation 13.30, corresponding to the Fourier self-deconvolved spectrum,
are real. Therefore, if the extrapolated signal is apodized (multiplied) by a symmetric real
function w(x), the ensuing, narrow line shape W (ν) is real and symmetric. This information
is also utilized in the frequency tuning method (see also Figure 13.4).

Figure 13.6 shows a simulated, noiseless example of how the distortions in the line nar-
rowed spectrum can be utilized to improve the impulse response, and thereby the line nar-
rowing itself. Plot (a) shows the starting point, the spectrum E(ν) after FSD. In the signal
domain only 10 samples were retained, so that the line shape is 19�x sinc(π19�xν). The
number of spectral lines is three, their heights are equal, and their true positions are marked
by vertical dashed lines. The black pins, in turn, indicate the wavenumbers νGk that the
impulse response coefficients are able to extrapolate. In order that these wavenumbers could
be adjusted (tuned) freely, the theoretical impulse response was always used. Its length was
always maximal, or M = 10, because this choice has proved to most effectively reveal
unattended lines in the line-narrowed spectrum. In plot (b) we see the outcome of the line
narrowing, when the first line coincides with one of the predictable wavenumbers, but there
is only one predictable wavenumber between the positions of the second and third lines. As
we can see, the second and third lines are represented by only one line, standing on a broad
and shallow hump. The shape of the line is clearly asymmetric, and the missing line has
caused slight asymmetries even to the first line, even though its wavenumber is predictable. In
plot (c), the two predictable wavenumbers have been tuned so that the line shapes are perfectly
symmetric. The missing line is still visible as a hump. Finally, plot (d) shows the outcome
when one new predictable wavenumber has been added somewhere inside the hump, and all
the three predictable wavenumbers have been tuned until all the spectral lines are perfectly
symmetric. The result is an output spectrum with narrowed lines at exactly correct positions
and with correct relative heights. Since the length of the signal after extrapolation was 15
times its starting length, the lines are narrowed by approximately the same coefficient. The
exact narrowing coefficient depends on the output line shape W (ν) selected. Here Besselian
W (ν) was used. The operations displayed in Figure 13.6 are similar to those performed in the
frequency tuning method.
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Figure 13.6: When using theoretical impulse response, the wavenumbers it can extrapolate (black pins)
can be improved according to the spectral distortions, until they coincide with the true line positions
(vertical dashed lines).
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13.11 The LOMEP line narrowing method

The principle of the LOMEP (Line shape Optimized Maximum Entropy linear Prediction)
line narrowing method is illustrated in Figure 13.7 by showing what happens in the signal
domain to one constituent wave I (x) (corresponding to a symmetric pair of spectral lines
at ±νk). We assume that the original line shape function WR(ν), and thereby the amplitude
function wR(x) of the constituent waves, is known. In addition we assume that the signal
is real and symmetric. Thus, it is enough to consider only the positive halves of the signal
(x ≥ 0) and spectrum (ν ≥ 0). The LOMEP advances in the following steps:

Step 1: Separate the interesting part of the spectrum. Extend it symmetrically to the
negative ν-values to make the corresponding partial signal real. Fourier transform
this partial spectrum to obtain the partial signal.

Step 2: Divide the partial signal by wR(x). (This is deapodization in the signal domain,
or FSD in the spectral domain.) Now, every constituent wave is a nondecaying
cosine wave, as displayed in Figure 13.7, and therefore can be extrapolated, if
the number of the impulse response coefficients is at least twice the number of
spectral lines. Since the last deapodized signal samples are usually very noisy,
you should now also select the index of the first signal sample to be extrapolated.

Step 3: Fix N = M + 1, and compute the q-factor as a function of M or N . Every q-
value q(M) computed requires the computation of a sequence of M new impulse
response coefficients, and an extrapolation to obtain the estimates Î− j needed
in calculating the q-factor. The impulse response coefficients are computed by
using Levinson–Durbin recursion and Burg’s formula.

Figure 13.7: Spectral line narrowing by signal extrapolation. After the original line shape func-
tion WR(ν) has been removed by FSD, one spectral line corresponds to one nondecaying cosine wave,
which can be extrapolated. Apodizing the extrapolated wave by w(x) leads to a new, narrower line
shape W (ν).
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Step 4: Accept the impulse response coefficients that provided the maximal q-factor. Use
them to extrapolate the signal as far as you wish.

Step 5: Extend the extrapolated partial signal symmetrically to negative x-values. Then
apodize (multiply) it by some symmetric, smoothly decaying amplitude func-
tion w(x).

Step 6: Compute inverse Fourier transform of the extrapolated and apodized partial sig-
nal. This gives the spectrum with the new line shape W (ν) = �

−1{w(x)}. The
FWHM of this new line shape – marked as �L in Figure 13.7 – is smaller than
the original.

In Figure 13.8 the algorithm, excluding the optimization of the impulse response in Step 3,
has been demonstrated by a noiseless simulated partial spectrum with four lines.

Figure 13.8: Principle of spectral line narrowing by signal extrapolation. The step numbers refer to the
LOMEP algorithm. Because of symmetry, only the positive halves of the x- and ν-axes are drawn.
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Note that often the spectral line width is proportional to the line position, so that the
spectral portion examined should be relatively narrow to minimize the differences in line
widths. If the original line shape is asymmetric, then in Step 1 the symmetrization of the
spectrum should not be done, since in Step 2 FSD is replaced by Fourier complex self-
deconvolution (FCSD). To compensate this, the possible imaginary part of the deapodized
partial signal is zeroed in the end of Step 2.

In separating the partial spectrum, whose lines are to be narrowed, you should select it so
that the derivatives of the spectrum at the ends of this spectral segment are as near to zero as
possible. The purpose is to avoid spurious peaks when symmetrizing the partial spectrum in
Step 1.

13.12 Frequency tuning method

The frequency tuning method, or the gulf tuning method, is an iterative line narrowing proce-
dure that is designed to make maximal use of the information contained in the distortions in
an incorrectly line narrowed spectrum. Like LOMEP, this method requires that after FSD the
partial signal consists of perfect cosine waves without phase errors. Then, if the extrapolated
and apodized signal is extended symmetrically to negative x-values before computing inverse
Fourier transform, the output line shape should be perfectly symmetric. Asymmetries in the
line shapes are a token of discrepancies between true line positions and the wavenumbers
that the impulse response is able to extrapolate (see Figure 13.4). Likewise, missing waves,
not extrapolated at all, can be detected from the output spectrum, if the number of original
spectral samples N is greater than the number M of the impulse response coefficients (see
Figure 13.6). Thus, monitoring the line narrowed spectrum continuously and improving the
hl -coefficients respectively provides us with a means to improve iteratively the quality of the
line narrowing.

While in LOMEP the signal extrapolation was carried out by using impulse response
coefficients given by the Levinson–Durbin recursion and Burg’s formula, the frequency tuning
method utilizes the theoretical impulse response. Thus, the line positions can also be fitted
explicitly. The theoretical impulse response should always be as long as possible, which
means that M should equal the number of reliable original signal samples. In this way, the
missing lines are most clearly visible in the spectrum.

To begin with, trial line positions are placed at spectral positions, where there is at least one
nearby line for certain. A theoretical impulse response is then constructed, able to extrapolate
just these wavenumbers. These impulse response coefficients are then used to enhance the
spectral resolution by extrapolating the deapodized (partial) signal, like in LOMEP. Now the
output line shapes reveal whether the trial line positions coincide with the true line positions.
The trial line positions (known as gulfs) are then tuned, until they coincide with the true ones,
which situation is revealed by perfectly symmetric line shapes. Thus, instead of maximizing
a single q-factor, every wavenumber is fitted separately. This feature makes the frequency
tuning method insensitive to large numbers of spectral lines.
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When such wavenumbers have been found that all the lines in the line narrowed spectrum
are perfectly symmetric, the output spectrum should be searched through for missing spectral
lines. If the original spectrum contains lines that have not yet been taken into account, they
leave small humps in the output spectrum. New trial line positions are then added at the
most prominent humps, and new impulse response coefficients are computed that are able to
extrapolate these wavenumbers in addition to the old ones.

It is clear from what is mentioned above, that the frequency tuning method is a highly
graphical and interactive of its nature. The frequency tuning itself can be mostly automatized,
but after each tuning the user has to decide where there are unattended lines, and set the starting
values of their wavenumbers. To help the user analyze the output spectrum, the suitably scaled
residual spectrum, containing only the background with the spectral lines deprived, should
also be drawn. The residual spectrum is obtained by subtracting a line with the predetermined
shape W (ν) at each trial line position νGk . The height of the line subtracted should equal the
value of the line narrowed spectrum at νGk . Thus, the value of the residual spectrum is zero at
each line position. In Figure 13.9 the frequency tuning method has been applied to a simulated
noise-free test spectrum with four lines. The residual spectrum, in a suitable scale, has been
drawn by a dashed line where useful. New gulfs are added and tuned, until all the lines are
symmetric and the background (residual) spectrum is smooth or, in case of a noiseless signal,
disappears.

The frequency tuning procedure can be described by the step-by-step algorithm given
below. Note that Steps 2 and 3 are practically identical to Steps 1 and 2 in LOMEP above.
Vector v is used to store the current estimates νGk of the wavenumbers νk contained in the
interesting piece of spectrum. Note that always νGk > 0. In every extrapolation such a
theoretical impulse response is always used that is able to extrapolate cosine waves with all
the wavenumbers in v. This means that the hl -coefficients must be able to extrapolate all the
pairs of wavenumbers ±νGk .

Step 1: Separate the interesting piece of spectrum. This piece is called the partial spec-
trum. Choose the first estimates νGk for spectral line positions νk and store them
in vector v. Do not define too many νGk at once. They are easy to add later. Note
that often the spectral line width is dependent on the line position, so that the
partial spectrum should be relatively narrow to minimize the differences in line
widths.

Step 2: If the original line shape WR(ν) is symmetric, extend the partial spectrum sym-
metrically to the negative ν-values. Fourier transform the partial spectrum to
obtain the corresponding partial signal.

Step 3: Deapodize (divide) the partial signal by wR(x) = �{WR(ν)}. If wR(x) and the
partial signal were complex, the imaginary part of the deapodized partial signal
should be zeroed. Now every constituent wave is a nondecaying cosine wave and
can be extrapolated, if the number of the impulse response coefficients is at least
twice the number of spectral lines. Since the last deapodized signal samples are
usually very noisy, you should now also select the index of the first signal sample
to be extrapolated.



252 13 Linear prediction

Figure 13.9: The frequency tuning method consists of repeated cycles (a) – (g), where new gulfs are
added to the most prominent humps and then tuned, until the narrowed spectral lines are perfectly
symmetric. The cycles are terminated when there are no more humps left. A gulf wavenumber νG
is such a wavenumber that the transfer function H(νG) = H(−νG) = 1.
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Step 4: By using the model of Equation 13.14, compute the theoretical impulse response
coefficients hl , able to extrapolate all the wavenumbers stored in vector v. Ir-
respective of the number of these wavenumbers, choose M to be equal to the
number of reliable samples in the partial signal.

Step 5: Extrapolate the deapodized partial signal by using the current hl -coefficients.
Extend the extrapolated partial signal symmetrically to negative x-values. Then
apodize (multiply) it by some symmetric, smoothly decaying amplitude func-
tion w(x).

Step 6: Compute inverse Fourier transform of the extrapolated and apodized partial sig-
nal.

Step 7: If all the spectral lines (or the residual spectrum at every trial line position νGk)
are symmetric, go to Step 9. Otherwise proceed to Step 8.

Step 8: Tune each wavenumber νGk away from the deeper sidelobe of the corresponding
spectral line. Equivalently, calculate the derivative of the output spectrum at
each trial line position νGk . (This can be done rapidly by use of the derivative
theorem and discrete Fourier transform.) If at νGk the derivative of the spectrum
is positive, increase νGk , and vice versa. By using this tuning rule it is easy to
make a computer program to tune the wavenumbers automatically. Return to
Step 4.

Step 9: If the residual spectrum is smooth, stop. The output spectrum is the final line
narrowed spectrum. Otherwise proceed to Step 10.

Step 10: Find approximately the centers of the most prominent humps in the spectrum.
Add their positions in vector v. Return to Step 4.

In Figures 13.10 and 13.11 we see the outcome of applying the frequency tuning method
to an experimental PQ9 branch of the ν5 rovibrational band of 12CH3I. The original Q branch
is plotted on the top of Figure 13.10, and also the singlet used to determine wR(x) is indicated.
The signal amplitude function wR(x) was searched by Fourier transforming the singlet alone,
and fitting a parametric line shape model to the envelope of the transform. The line narrowed
Q branch is plotted at the bottom of Figure 13.10. The signal was extrapolated to 30 times
its original length. In Figure 13.11 there is an enlarged image of the line narrowed Q branch.
The new line shape is Besselian, because the apodization function w(x) used was a squared
parable (see Figure 12.6 E).
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Figure 13.10: The frequency tuning method applied to a piece of a high-resolution FT-IR spectrum
of 12CH3I. The input line shape was taken from the singlet line indicated in the topmost plot.
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Figure 13.11: An enlarged plot of the line narrowed Q branch in Fig. 13.10. The theoretical line
positions, obtained from literature, are indicated by pins containing the corresponding J quantum
number, and black dots denote unidentified lines.

13.13 Other applications

In addition to line narrowing, there are also other spectroscopic applications of linear pre-
diction. For the time being, these applications have been tested only very superficially, and
therefore only the general principles are presented here. Remember that even though in line
narrowing the constituent waves were always made nondecaying by FSD, decaying waves can
also be extrapolated if their amplitude curves are suitable.

In Figure 13.12 we see the principle of spectral noise filtering by using linear prediction in
the signal domain. The noisy spectrum E(ν) (only a partial spectrum with one line is drawn
here) is first Fourier transformed. Then the end of the signal I (x), dominated by noise, is
replaced by new signal samples extrapolated from the more reliable samples in the beginning
of the signal. Finally, taking inverse Fourier transform gives the noise-filtered spectrum E ′(ν).
Note that the starting point of the extrapolation, marked as Xextr in the figure, can be selected
much earlier than the optimal point of truncation Xi , if the noise filtering were made by simple
signal truncation. This same principle can also be used to correct instrumental distortions,
arising from signal truncation during registration, as illustrated in Figure 13.13.

It may be likewise useful to extrapolate shorter signal segments. Spectral background and
interference originate from a relatively short distorted signal portion, as has been explained
earlier. These distorted signal segments could be reproduced by extrapolating from the sur-
rounding, better signal. It has transpired, however, that these distortions tend to reappear in
the extrapolated signal. In NMR, backward one-point extrapolation may be used to predict
the sample I0, if it cannot be measured properly.

Outside spectroscopy, extrapolation by using linear prediction has been successfully ap-
plied also in regenerating damaged segments to audio signals. In this application, the com-
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Figure 13.12: Noise filtering by signal extrapolation. In the signal domain, the noisy part is regenerated
by extrapolating it from the first part, where the signal-to-noise ratio is better. More noise is removed
this way than by simple truncation in the optimal point Xi .

Figure 13.13: The same procedure that was used to noise filtering in Figure 13.12 can also be applied
to the removal of oscillations due to device distortions.

bination of Levinson–Durbin recursion and Burg’s formula has turned out to be by far the
best method to construct the impulse response coefficients. Since the number of different
frequencies in audio signals is very large, N and M must also be very large. For music
signals, choosing M to be of the order of 1000 and fixing the ratio N/M near to 2 has
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proven a good compromise, so that the N samples used to construct the hl -coefficients are
still stationary enough, and the M coefficients are able to extrapolate a sufficient amount
of different frequencies. Naturally, the best result is obtained by extrapolating from both
directions. The samples immediately preceding and immediately following the corrupted
section are then used to compute the forward and backward extrapolating impulse response
coefficients, respectively. The forward and backward extrapolated signals are combined so
that up to the midpoint of the corrupted section the forward extrapolation dominates, and there
the emphasis is rapidly but continuously switched to the backward extrapolation. As we may
see from the experimental test shown in Figure 13.14, the extrapolation error is incredibly
small, considering the large number of samples reconstructed. Moreover, the reconstructed
section is very plausible to the human ear.
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Figure 13.14: A piece of a signal from a jazz recording (top); the same signal after 1500 samples (0.034
seconds in time) have been lost; the missing samples have been extrapolated from both directions by
Burg’s impulse response with M = 2000 and N = 5000 (see the text); and the extrapolation residual,
obtained by subtracting the extrapolated signal from the true signal (bottom). The numbers on the x-axis
are the sample numbers.
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13.14 Summary

As a short summary about signal extrapolation we state the following (all constants are real):
A signal that can be expressed in the form

I (x) =
M∑

k=1

Akeiφk e−αk x ei2πνk x

can be predicted, and thereby extrapolated, by M impulse response coefficients hl . The same
impulse response coefficients are applicable irrespective of the values of the amplitudes Ak

and phases φk . If all the αk are zero, then the same coefficients always apply to forward
prediction (Equation 13.1) and backward prediction (Equation 13.2).

In the special case

I (x) =
n∑

k=1

Ak cos(2πνk x + φk) (13.31)

the same impulse response coefficients are always able to predict the signal both forward and
backward. In addition, the impulse response coefficients are real. The minimal number of the
impulse response coefficients needed is 2n.

If the original signal is real and free of phase errors, so that the original line shape WR(ν)

is real and symmetric, then the interesting piece of spectrum (the partial spectrum) can be
extrapolated symmetrically to negative ν-values before it is Fourier transformed. The ensuing
partial signal, after division by wR(x), is then a real signal of the form given by Equation 13.31
with φk = 0 for every k. The minimal number of impulse response coefficients needed to
extrapolate it is twice the number of spectral lines with νk > 0.

If the extrapolated cosine waves are apodized by a (real and) symmetric function w(x),
the line shape W (ν) after inverse Fourier transform is likewise (real and) symmetric. Any
asymmetries are a token of incorrect impulse response coefficients. This characteristic is
applied in the frequency tuning method to improve iteratively the hl -coefficients.

When M (the number of hl -coefficients) is smaller than the number of known signal
samples, then the spectral lines, whose constituent waves were not extrapolated, are visible as
humps in the line narrowed spectrum.

Example 13.1: Function ax2 (a is a real constant) has been sampled by using sampling
interval �x . (There is not inevitably a sampling point in the origin.) Show that these samples
can be extrapolated by three impulse response coefficients h1, h2, h3, and find the values of
these coefficients.

Solution. We require that the forward predicted estimate, given by Equation 13.1, is errorless
at an arbitrary point x , or (coefficient a has been cancelled)

x2 = �xh1(x − �x)2 + �xh2(x − 2�x)2 + �xh3(x − 3�x)2

= (�xh1 + �xh2 + �xh3) x2 − 2�x (�xh1 + 2�xh2 + 3�xh3) x

+ (�x)2 (�xh1 + 4�xh2 + 9�xh3) .
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This requirement is fulfilled if the coefficient of x2 is 1, the coefficient of x is 0, and the
constant term is 0, or


�xh1 + �xh2 + �xh3 = 1,

�xh1 + 2�xh2 + 3�xh3 = 0,

�xh1 + 4�xh2 + 9�xh3 = 0 .

These conditions have the unique solution


h1 = 3/�x,

h2 = −3/�x,

h3 = 1/�x .

Problems

1. Certain M impulse response coefficients h1, . . . , hM are able to predict any sample I j

from a signal I (x) as a linear combination of the samples I j−1, . . . , I j−M as

I j = �x
M∑

l=1

hl I j−l .

Find new coefficients h′
3, . . . , h′

M+2 that are able to predict signal samples I j from
samples I j−3, . . . , I j−M−2 as

I j = �x
M+2∑
l=3

h′
l I j−l .

2. Let us define the sequence of samples I j so that

I j = ak j
1 + bk j

2 ,

where a, b, k1, and k2 are real numbers.

(a) Show that the sequence can be extrapolated by two impulse response coefficients h1
and h2, and calculate h1�x and h2�x as functions of k1 and k2.

(b) Compute the numerical values of h1�x and h2�x , when k1 = 0.8 and k2 = 0.8−1 =
1.25. Finally, test the coefficients by extrapolating the sequence

x j = 3 × (0.8) j − 2 × (0.8)− j .

Are your coefficients also able to extrapolate this sequence backwards?
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3. (a) Construct such impulse response coefficients that are able to extrapolate the Fi-
bonacci sequence 1, 1, 2, 3, 5, 8, 13, . . ., where each sample is the sum of two pre-
ceding samples. Since the sampling interval is not defined now, it is enough to find
the products �xhl .

(b) Are your coefficients also able to extrapolate this sequence backwards? If not, find
the coefficients �xhl capable of backward extrapolation.

4. Certain impulse response coefficients can extrapolate any sinusoidal wave with the wave-
number ν0. Calculate the q-factor, when these coefficients are used to extrapolate

(a) cosine wave with the wavenumber ν0,

(b) sine wave with the wavenumber ν0.

5. Let M = 4 and let the impulse response coefficients be


h1 = 884.9270 cm−1,

h2 = −195.7739 cm−1,

h3 = h1,

h4 = −2000.0000 cm−1.

The signal domain sampling interval is �x = 0.5 × 10−3 cm.

Prove that these coefficients are able to extrapolate a nondecaying wave, whose wave-
number is ±200 cm−1 or ±700 cm−1.

Hint: Apply the predictability condition of Equation 13.9.

6. The hl -coefficients given in the preceding problem are used to extrapolate backwards a
sequence of five known samples I0, . . . , I4. The sampling interval is 0.5 × 10−3 cm, as
in the previous problem. Calculate the q-factor with J = 1 and N0 = 5, when

(a) the sequence is the constant amplitude cosine wave I j = cos(2πν j�x), where ν =
700 cm−1,

(b) the sequence is the decaying cosine wave I j = exp
[−α( j�x)2

]
cos(2πν j�x),

where α = 100.0 × 103 cm−2 and ν = 700 cm−1.

7. Let us calculate the theoretical impulse response coefficients by sampling the function

h(x) =
∑

k

[
C+

k exp(i2πνk x) + C−
k exp(−i2πνk x)

]
,

where the summation is over all the wavenumbers νk present in the signal (νk > 0). The
actual coefficients are the samples

hl = h(l�x).

Derive a linear set of equations for solving the numbers C+
k and C−

k .

Hint: Start by writing the predictability condition of Equation 13.9 for an arbitrary
wavenumber νk present in the signal.



Answers to problems

Chapter 1.
2. h(−t) (both).
3. e−π2t2/α (both).
4. e−2πσ |t |.
5. I = cos(2π f0T ) T 2 sinc2(π f0T ).

6.
1

π f

sin [(1 + 1/N )α/2] sin(α/2)

N sin [α/(2N )]
, where α = 2π f T . N → ∞ : T sinc2(πT f ).

10.
2

π

∞∫
0

sin(2π f ε)

f
d f = 1 (from mathematical tables).

11. (a) 1. (b) e±i2π f0t . (c) 2 cos(2π f0t). (d) ±2i sin(2π f0t).

Chapter 2.

4.

{
2T − |t |, |t | ≤ 2T,

0, |t | > 2T .

7. 1
2i H( f − f0) − 1

2i H( f + f0).
9. (a) 2T sinc(π2T f ) − T sinc2(πT f ). (b) 2 cos(2πT f ) T sinc2(πT f ).

(c) T [1 + 2 cos(2πT f )] sinc2(πT f ) − 2T sinc(π2T f ).
10. T sinc2(πT f ).
11. −i f e−π f 2

.
12. i Aπ f1 [δ( f − f1) − δ( f + f1)] + i Aπ f2 [δ( f − f2) − δ( f + f2)].
13. (a) 2

3 π . (b) e−πa2
.

14. 3
4 π .

15. π
4a .

Chapter 3.
4. 5.14 ns, 10.29 ns, 15.43 ns.
5. �−1 : �tW−, where W−

jk = w
− jk
M ; j, k = 0, . . . , M − 1.

�
+1 : � f W+, where W+

jk = w
jk
M ; j, k = 0, . . . , M − 1.
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Chapter 4.

2. Hk =




1
2 (Ck + C∗

N−k) + w−k
2N
2i (Ck − C∗

N−k), k = 1, . . . , N − 1,

1
2 (Ck−N + C∗

2N−k) + w−k
2N
2i (Ck−N − C∗

2N−k), k = N + 1, . . . , 2N − 1,
1
2 (C0 + C∗

0 ) + 1
2i (C0 − C∗

0 ), k = 0,
1
2 (C0 + C∗

0 ) − 1
2i (C0 − C∗

0 ), k = N .

3. (a) Hk = 1. (b) Hk = e−iπk . (c) Hk = cos(πpk/N ). (d) Hk = −i sin(πpk/N ).

Chapter 5.
3. (a) e−st0 , (b) 1

s , (c) bδ(t) − abe−at .

4. 1
a−s + 1

a+s , if |Re{s}| < a.
5. (a) s

s2+a2 . (b) a
s2+a2 .

6. h(t) = t + sin t .
7. f (t) = sin(2t), g(t) = sin(2t) + cos(2t).

8. y(t) = K p

p2 − ω2
0

[
1

ω0
sin(ω0t) − 1

p
sin(pt)

]
.

In resonance: y(t) = K

2ω2
0

[sin(ω0t) − ω0t cos(ω0t)] .

10. g(t) =
{ 1

2 e2t , t < 0,

− 1
2 e−2t , t > 0.

11. hout(t) =
{

β1
β1−β0

A (e−β0t − e−β1t ), t ≥ 0,

0, t < 0.

12. g(t) = δ(t) − R
L e− R

L t at t ≥ 0, and g(t) = 0 otherwise.
13. g(t) = te−Ct at t ≥ 0, and g(t) = 0 otherwise.

Chapter 6.
1. x = 1

2�ν
.

3. E ′(ν) = 1
2 I0

∞∑
n=−∞

Jn(2πν0ε)
[
δ(ν − ν0 + n

K
) + δ(ν + ν0 − n

K
)
]
.

4. 2N = 32768.

7. x = ln 10
2πσ

.

8. E(ν) ≈ 2π

ν0

[
1 −

√
1 − (ν/ν0)2

sin(αmax)

]
.

9. L = 1.21 f 2

ν0r2
.

10. (a) 2 ln 2/π , (b) 4 ln 2/π , (c) ≈ 1.2067.
11. (a) 0.8858929413789046806 . . . /T , (b) T ≈ 8.8589 µs.
12. (a) T = 885.9 ns, (b) �t = 2.381 ns.
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Chapter 9.
1. θ = arcsin( λ

L+p ) ≈ 0.005273 rad.

4. Iout(θ) = a2 sinc2(πaν sin θ)
sin2(Nπ18aν sin θ)

sin2(π18aν sin θ)

sin2(10πaν sin θ)

sin2(π2aν sin θ)
.

6. (a) 8/9 ≈ 89 %.

7. (a) Iout(s, p) = D2 sinc2(π Ds)
sin2(π Nds)

sin2(πds)
h2 sinc2(πhp).

8. Iout(s, p) = δ2(s, p) + X2 sinc2(π Xs)Y 2 sinc2(πY p).

9. Eout(s, p) = 4R2 sinc(2π Rs) sinc(2π Rp) − π R2 J1(2π R
√

s2 + p2)

π R
√

s2 + p2
.

11. Iout(s, p) = L2

4π2s2 {sinc2 [π L(p + s)] + sinc2 [π L(p − s)]}
− L2

2π2s2 cos(2π Ls) sinc [π L(p + s)] sinc [π L(p − s)] .

12. D = 2 f λ/d ≈ 2.5 mm.

13. Iout ≈ δ2(s, p) + 1
4C2 sin2

(
π2ν2

C f 2 r ′2
)

, where r ′ =
√

x ′2 + y′2.

Chapter 10.
1. �x = π/C.

3. H (k)(0) =
{

0, k is odd,

i k Ck

k+1 , k is even.

4. 〈x〉 = µ, standard deviation= σ (this is the normal distribution).
7. (a) σ = √

2. (b) σ = 1/(
√

2 πa).

8. 2pq/(p2 + q2)2.
9. 7/8.

Chapter 11.
2. (a) �t ≈179 µs. (b) �t =625 µs.

3. Gk = sin [π(2n + 1)k/M]

(2n + 1) sin(πk/M)
.

5. Gk = 1 − 2 sin(πk/M) sin(3πk/M).
7. 1/3.

8.
D − 2/T0

D
= 1 − 8

p(m + 1)
.

9. (a) �t = 31.25 µs. (b) g(t) = δ(t) − cos [2π (2.5 kHz) t] sinc [π (3 kHz) t] (6 kHz),
where δ(t) = 1/�t in the origin, zero otherwise. (c) 641 data.

11. �(0) ≈ −0.0226.
13. �(0) ≈ −0.1790.
14. Q0 ≈ 3.091.

16. (a) N ′ =
√

T
3T0

N .

17. (S/N )′ ≈ 1580.

19. 2N = 40 000.
20. Three data.
21. x = ±2nd.
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Chapter 12.

1. I
IR

=



1

πσ
e2πσ |t |(1 − |t |

T
), |t | ≤ T,

0, |t | > T .

2. (a) e2πσ |t | sinc2( 2πσ
K t). (b) 2

Kπ
e2πσ |t | sinc2( 2πσ

K t).

3. Q0 ≈ K
√

1.2067π K0(K − 1)/K
[
e1.2067π K0(K−1)/K − 1

]−1/2
.

5.
Bπ

2p

1

cos( qπ+i2π2t
2p )

, B = 2p

π
cos(

qπ

2p
).

6. (a) A1δ(ν − ν1)+ A2δ(ν − ν2)+ A3δ(ν − ν3). (b) A1ei2πν1x + A2ei2πν2x + A3ei2πν3x .

7. δ [x − (s − L/2)] − δ [x − (s + L/2)] .

8. 1
4 .

9. (a) ≈ 0.44626. (b) ≈ 1.881.

10. 2L
ν

cos(2πνL) − 1
πν2 sin(2πνL).

11. Second: 1
L δ [x − (s − L)] − 2

L δ(x − s) + 1
L δ [x − (s + L)].

Chapter 13.

1.




h′
l = (

�xh2
1 + h2

)
�xhl−2 + �xh1hl−1 + hl ; l = 3, . . . , M,

h′
M+1 = (

�xh2
1 + h2

)
�xhM−1 + �xh1hM ,

h′
M+2 = (

�xh2
1 + h2

)
�xhM .

2. (a)

{
h1�x = k1 + k2,

h2�x = −k1k2 .
(b)

{
h1�x = 2.05,

h2�x = −1 .

These coefficients can extrapolate to both directions.
3. (a) M = 2, �xh1 = �xh2 = 1.

(b) Above coefficients can extrapolate only forward.

Backward extrapolating coefficients are

{
�xh1 = −1,

�xh2 = 1 .

4. (a) 1. (b) −1 (q-factor assumes symmetric signal).
6. (a) 1. (b) 0.7115266.

7.




�x
∑
k

[
C+

k S
(
β+

k1

) + C−
k S

(
β−

k1

)] = 1,

�x
∑
k

[
C+

k S
(−β−

k1

) + C−
k S

(−β+
k1

)] = 1,

�x
∑
k

[
C+

k S
(
β+

k2

) + C−
k S

(
β−

k2

)] = 1,

�x
∑
k

[
C+

k S
(−β−

k2

) + C−
k S

(−β+
k2

)] = 1,

...
... ,

where S
(
β±

kn

) =
M∑

l=1

exp(i2β±
knl) =

{
M, β±

kn = 0,
exp

(
i2Mβ±

kn

)−1

1−exp
(−i2β±

kn

) , β±
kn 	= 0 ,

and

{
β+

kn = π (νk − νn)�x,

β−
kn = π (−νk − νn) �x .
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Index

B(x), transmission function, 128
fN , critical sampling frequency, 42
H∞, inverse Laplace transform, 64
k, wavenumber, 77
K , resolution enhancement factor, 206
s, complex angular frequency, 61
wN = ei2π/N , 53
W�x

L (ν), instrumental function in FTS, 84
WT ( f ), instrumental function of truncation,

36
W�t

T , instrumental function of discrete trans-
form, 39

W�, instrumental function of an extended
source, 93

q-curve, 241
z transform, 73
� , Fourier transform, 14
�

−1, inverse Fourier transform, 14
�0, Laplace transform, 63
�

−1
0 , inverse Laplace transform, 61

�∞, Laplace transform, 64
�

−1∞ , inverse Laplace transform, 64
δ(t), Dirac’s delta function, 17
�L (x), triangular function, 99
ν, wavenumber, 77
�2T (t), boxcar function, 36
�(x, d), comb function, 133
∗, convolution, 26
�, cross correlation, 30
∧=, correspondence relation, 18

Aliasing, 42
Amplitude spectrum, 23
Amplitudes of a Fourier series, 12
Aperture broadening, 92
Apodization, 99
Apodization function, 99

Autocorrelation, 31
Autocorrelation theorem, 31

Background, 193
Band limited white noise, 170
Band separation, 218
Band-pass filtering, 172
Beam deflection technique, 105
Bessel functions, 144
Binary filters, 148
Binary inversion, 54
Boxcar function, 36
Burg’s formula, 240
Burg’s impulse response, 239

Cauchy–Schwarz inequality, 161
Center of mass, 159
Comb function, 133
Complex amplitudes of a Fourier series, 12
Complex angular frequency, 61
Complex conjugate, 28
Convolution, 26
Convolution theorem, 26

of discrete Fourier transform, 45
of the z transform, 76
of the Laplace transform, 74

Cooley–Tukey algorithm, 54
Correlation theorem, 30
Cosine transform, 23
Critical computing interval, 43
Critical sampling frequency, 42
Critical sampling interval, 41
Cross correlation, 30

de Broglie wavelength, 156
Deapodization, 248
Deconvolution, 196
Derivative theorem, 29
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of the Laplace transform, 66
Derivatives, 221
Diffraction

Fraunhofer, 127
Fresnel, 127
orders of, 134

Diffraction grating, 136
Dirac’s delta function, 17
Direct Fourier transform, 56
Dirichlet conditions, 11
Discontinuity correction, 176
Discrete complex amplitude spectrum, 12
Discrete Fourier transform, 35
Dispersion spectrum, 104
Dispersive FT-IR spectrometry, 104

Eigenfunction
of an operator, 158

Equivalent width
of a function, 155

Excitation of NMR, 114

Fast Fourier transform, 49
FCSD, Fourier complex self-deconvolution,

219
FFT, fast Fourier transform, 49
FID, free induction decay, 115
Filter function, 172
Filtering

mathematical, 170
Fourier complex self-deconvolution, 219
Fourier self-deconvolution, 205
Fourier series, 11
Fourier transform, 14

inverse, 14
Fourier transform pair, 14
Fourier transform spectroscopy, 77
Fraunhofer diffraction, 127
Free induction decay, 115
Fresnel diffraction, 127
FSD, Fourier self-deconvolution, 205
FTS, Fourier transform spectroscopy, 78
Fundamental frequency of a Fourier series, 12

Gibbs phenomenon, 12
Grating

diffraction, 136
transmission, 132

Gulfs, 250

Gyromagnetic ratio
of a nucleus, 109

Hankel transform, 152

ICR, ion cyclotron resonance, 121
imaging lens, 147
Impulse function, 17
Impulse response, 67, 173, 234

Burg’s method, 239
matrix method, 236
theoretical, 234

Instrumental function
in FTS, 84
of an extended source, 93
of discrete transform, 39
of truncation, 36

Instrumental resolution, 94
Interference record, 81
Interferogram, 81
Interferometer

Michelson, 79
Twyman–Green, 89

Interpolation, 165
degree of, 166

Ion cyclotron frequency, 121
Ion cyclotron resonance, 121

Laplace transform, 63
inverse, 61

Larmor angular frequency, 110
Larmor frequency, 115
Larmor precession, 110
Lattice, 144
Levinson–Durbin recursion, 239
Linear system, 66
Lorentzian line shape, 182
Low-pass filter, 148

Magnetic moment
of a nucleus, 109

Magnetron frequency, 123
Mass spectrometer, 119
Matrix method impulse response, 236
Mean square, 160
Mean square deviation, 160
Michelson interferometer, 79
Modulation theorem, 26
Molecular spectroscopy, 100
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Moment
of inertia, 160
of order k, 158

NMR, nuclear magnetic resonance, 112
Nuclear magnetic resonance, 112
Nyquist frequency, 42

One-point extrapolation, 229
Optimal smoothing, 181
Optimal truncation

of the signal, 95
Overdeconvolution, 217

Parseval’s theorem, 29
Phase spectrum, 23
Photoacoustic spectroscopy, 105
Planck’s constant, 100
Power spectrum, 31
Power theorem, 28
Predictability condition, 233
Probability density, 157
Probability interpretation, 157

RC circuit
differentiating, 71
integrating, 68

RCL circuit, 72
Reflection coefficient, 239
Resolution

instrumental, 94
theoretical, 86

Resolution enhancement factor, 206
rms value, 160
Root mean square, 160

Sampling theorem, 48
Scaling theorem, 25
Selection rules, 101
Shift theorem, 24

of the Laplace transform, 74

Signal, 23
Similarity theorem, 25
Sinc function, 36
Sine transform, 23
Slit, 128
Smoothing

mathematical, 180
Smoothing function, 173
Smoothing parameter, 187
Spatial coordinate, 130
Spatial filtering, 148
Spectral orders, 39
Spectrum, 23
Square wave, 12
Standard deviation, 160
Step response, 67
SWIFT, stored-waveform inverse Fourier

transform, 124

Theoretical impulse response, 234
Theoretical resolution, 86
Time-resolved spectrometry, 105
Transfer function, 66, 172
Transform lens, 145
Transform plane, 145
Transmission function, 128
Transmission grating, 132
Trapping frequency, 122
Triangular function, 99
Truncation, 36
Twyman–Green interferometer, 89

Uncertainty principle, 156
Underdeconvolution, 217
Undersampling, 42
Unit step, 61

Variance, 160

Wavenumber, 77




